Skip to main content
Log in

Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Altered expression of the TaRSL2 gene was positively correlated with variation in root hair length during allopolyploid wheat evolution, and overexpression of TaRSL2 in Arabidopsis increases root hair length.

Root hairs aid nutrient and water uptake and anchor the plant in the soil. Allopolyploid wheats display significant growth vigor in terms of root hair length compared to their diploid progenitors, but little is known about the molecular basis of variation in root hair length during wheat allopolyploidization. Here, we isolated three orthologs of the Arabidopsis root hair gene ROOT HAIR DEFECTIVE SIX-LIKE 2 (AtRSL2) in allohexaploid wheat, designated TaRSL2-4A, TaRSL2-4B and TaRSL2-4D. The deduced polypeptides of these three TaRSL2 homoeologous genes shared high similarity, and a conserved basic helix-loop-helix (bHLH) domain was present in their C-terminal regions. Notably, the expression of TaRSL2 was positively correlated with root hair length of wheat accessions with different ploidy levels. Moreover, ectopic overexpression of TaRSL2-4D in Arabidopsis could increase root hair length. We found that the transcript levels of TaRSL2 homoeologous genes dynamically changed during allopolyploid wheat evolution, implicating the complexity of the underlying molecular mechanism. Collectively, we propose that altered expression of the TaRSL2 gene contributed to variation in root hair length in allopolyploid wheats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix-loop-helix

RSL:

ROOT HAIR DEFECTIVE SIX-LIKE

References

  • Akhunova AR, Matniyazov RT, Liang HQ, Akhunov ED (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genom 11:505. doi:10.1186/1471-2164-11-505

    Article  Google Scholar 

  • Balao F, Herrera J, Talavera S (2011) Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. N Phytol 192:256–265

    Article  Google Scholar 

  • Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng XH, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8(1):e1002446. doi:10.1371/journal.pgen.1002446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols 2009, pdb. prot5177

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Vijayakumar P, Dolan L (2011) Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346:1–14

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific, London, pp 184–192

    Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059

    Article  CAS  PubMed  Google Scholar 

  • Franciosini A, Rymen B, Shibata M, Favero DS, Sugimoto K (2017) Molecular networks orchestrating plant cell growth. Curr Opin Plant Biol 35:98–104

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    Article  CAS  PubMed  Google Scholar 

  • Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013) Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64:3711–3721

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Xin M, Huang K, Xu Y, Liu Z, Hu Z, Yao Y, Peng H, Ni Z, Sun Q (2016) Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. N Phytol 209:721–732

    Article  CAS  Google Scholar 

  • He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel beta-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn R, Wingen LU, Snape JW, Dolan L (2016) Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. J Exp Bot 67:4535–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang Y, Choi HS, Cho HM, Cho HT (2017) Tracheophytes contain conserved orthologs of a basic helix-loop-helix transcription factor to modulate ROOT HAIR SPECIFIC genes. Plant Cell 29:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kim CM, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE Class I genes promote root hair development in the grass Brachypodium distachyon. PLoS Genet 12:e1006211. doi:10.1371/journal.pgen.1006211

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CM, Han CD, Dolan L (2017) RSL class I genes positively regulate root hair development in Oryza sativa. N Phytol 213:314–323

    Article  CAS  Google Scholar 

  • Kwasniewski M, Nowakowska U, Szumera J, Chwialkowska K, Szarejko I (2013) iRootHair: a comprehensive root hair genomics database. Plant Physiol 161:28–35

    Article  CAS  PubMed  Google Scholar 

  • Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Xu CM, Zhao N, Qi B, Kimatu JN, Pang JS, Han FP (2009) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genom 36:519–528

    Article  CAS  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Melzer M, Szarejko I (2015) Root hair development in the grasses: what we already know and what we still need to know. Plant Physiol 168:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  PubMed  Google Scholar 

  • Peterson RL (1992) Adaptations of root structure in relation to biotic and abiotic factors. Can J Bot 70:661–675

    Article  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Rev 62:1–40

    Article  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox G (1998) Archaeobotanical evidence for the beginnings of agriculture in Southwest Asia. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 25–38

    Google Scholar 

  • Yang CW, Zhao L, Zhang HK, Yang ZZ, Wang H, Wen SS, Zhang CY, Rustgi S, von Wettstein D, Liu B (2014) Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci USA 111:11882–11887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42:264–267

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill BS, Rasmussen JB, Barbe V, Faris JD, Chalhoub B (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci USA 108:18737–18742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Major Program of the National Natural Science Foundation of China (31290212) and the National Key Research and Development Program of China (Grant No. 2016YFD0100801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfu Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Wang, H., Han, Y. et al. Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution. Planta 246, 1019–1028 (2017). https://doi.org/10.1007/s00425-017-2735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2735-3

Keywords

Navigation