Skip to main content
Log in

Vanillin biosynthetic pathways in plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field.

Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HBS:

Hydroxybenzaldehyde synthase

HCHL:

4-Hydroxycinnamoyl-CoA hydratase/lyase

COMT:

Caffeic acid O-methyltransferase

References

  • Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversionof ferulic acid to vanillin. Appl Microbiol Biotechnol 54:799–807

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MA, El-Mawla A, Beerhues L (2002) Benzoic acid biosynthesisin cell cultures of Hypericum androsaemum. Planta 214:727–733

    Article  Google Scholar 

  • Anwar MH (1963) Paper chromatography of monohydroxyphenols in vanilla extract. Anal Chem 35:1974–1976

    Article  CAS  Google Scholar 

  • Dignum MJW, Kerler J, Verpoorte R (2001) Vanilla production: technological, chemical, and biosynthetic aspects. Food Rev Int 17:199–219

    Article  CAS  Google Scholar 

  • French CJ, Vance CP, Towers GHN (1976) Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extracts of potato tubers and Polyporushispidus. Phytochemistry 15:564–566

    Article  CAS  Google Scholar 

  • Fritz RR, Hodgins DS, Abell CW (1976) Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J Biol Chem 251:4646–4650

    CAS  PubMed  Google Scholar 

  • Funk C, Brodelius PE (1990a) Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. II Effects of precursor feeding and metabolic inhibitors. Plant Physiol 94:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk C, Brodelius PE (1990b) Phenylpropanoid metabolism in suspension cultures of Vanilla planifoliaAndr. III Conversion of 4-methoxycinnamic acids into 4-hydroxybenzoic acids. Plant Physiol 94:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallage NJ, Møller BL (2015) Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8:40–57

    Article  CAS  PubMed  Google Scholar 

  • Gallage NJ, Hansen EH, Kannangara R, Olsen CE, Motawia MS, Jørgensen K, Holme I, Hebelstrup K, Grisoni M, Møller BL (2014) Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037. doi:10.1038/ncomms5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin: a bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170

    Article  CAS  PubMed  Google Scholar 

  • Havkin-Frenkel D, Podstolski A, Dixon R (2003) Vanillin biosynthetic pathway enzyme from Vanilla planifolia. United States patent application publication. https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US20030070188.pdf

  • Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jarvis AP, Schaaf O, Oldham NJ (2000) 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acidand salicylic acid but benzaldehyde is not. Planta 212:119–126

    Article  CAS  PubMed  Google Scholar 

  • Kanisawa T, Tokoro K, Kawahara S (1994) In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction taste XI (Proceeding of the International Symposium). Springer, Tokyo, p 268

    Chapter  Google Scholar 

  • Kaur B, Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169(4):1353–1372

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Jawali N, Mitra A (2012) Shikimate pathway modulates the elicitor-stimulated accumulation of fragrant 2-hydroxy-4-methoxybenzaldehyde in Hemidesmusindicusroots. Plant PhysiolBiochem 56:104–108

    CAS  Google Scholar 

  • Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferylaldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545

    Article  CAS  PubMed  Google Scholar 

  • Löscher R, Heide L (1994) Biosynthesis of p-hydroxybenzoate fromp-coumarate and p-coumaroyl-coenzyme A in cell-free extracts of Lithospermum erythrorhizon cell cultures. Plant Physiol 106:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Makkar HPS, Beeker K (1994) Isolation of tannins from leaves of some trees and shrubs and their properties. J Agric Food Chem 42:731–734

    Article  CAS  Google Scholar 

  • Mitra A, Kitamura Y, Gasson MJ, Narbad A, Parr AJ, Payne J, Rhodes MJC, Sewter C, Walton NJ (1999) 4-Hydroxycinnamoyl-CoA hydratase/lyase (HCHL)-an enzyme of phenylpropanoid chain cleavage from Pseudomonas. Arch Biochem Biophys 365:10–16

    Article  CAS  PubMed  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillinusing a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology 144:1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Negishi O, Sugiura K, Negishi Y (2009) Biosynthesis of vanillin via ferulic acid in Vanilla planifolia. J Agric Food Chem 57:9956–9961

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Tao F, Du H, Xu P (2015) Mimicking a natural pathwayfor de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep. doi:10.1038/srep13670

    Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999) Biochemical andgenetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol 65:4837–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pak FE, Gropper S, Dai WD, Havkin-Frenkel D, Belanger FC (2004) Characterization of a multifunctional methyltransferases from the orchid Vanilla planifolia. Plant Cell Rep 22:959–966

    Article  CAS  PubMed  Google Scholar 

  • Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  CAS  PubMed  Google Scholar 

  • Podstolski A, Havkin-Frenkel D, Malinowski J, Blount JW, Kourteva G, Dixon RA (2002) Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Phytochemistry 61:611–620

    Article  CAS  PubMed  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved inbioconversion of vanillin to protocatechuate. J Bacteriol 179:2595–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populustrichocarpa × Populusdeltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler J-P, Madlung J, Rose A, Seitz HU (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188:594–600

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 30-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK, Sharma UK, Sharma N (2008) A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr 59(4):299–326

    Article  CAS  PubMed  Google Scholar 

  • Sircar D, Mitra A (2008) Evidence for p-hydroxybenzoate formation involving phenylpropanoid chain-cleavage in hairy roots of Daucus carota. J Plant Physiol 165:407–414

    Article  CAS  PubMed  Google Scholar 

  • Tokoro K, Kawahara S, Amano A, Kanisawa T, Indo M (1990). In: Bessiere Y, Thomas AF (eds) Flavour science and technology, vol 73. Wiley, Chichester, p 73

  • Venturi V, Zennaro F, Degrassi G, Okeke BC, Bruschi CV (1998) Genetics of ferulic acid bioconversion to protocatechuic acidin plant-growth-promoting Pseudomonas putida WCS358. Microbiology 144:965–973

    Article  CAS  PubMed  Google Scholar 

  • Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Heide L, Tabata M (1991) Formation of p-hydroxybenzoic acid from p-coumaric acid by cell free extract of Lithospermum erythrorhizon cell cultures. Phytochemistry 30:2233–2236

    Article  CAS  Google Scholar 

  • Zamzuri NA, Abd-Aziz S (2012) Biovanillin from agro wastes as an alternative food flavour. J Sci Food Agric 93:429–438

    Article  PubMed  Google Scholar 

  • Zenk MH (1965) Biosynthese von vanillin in Vanilla planifolia. Andr Z Pflanzenphysiol 53:404

    CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Indian Institute of Technology Kharagpur for permitting to access the digital library and for providing ‘Institutional Assistantship’ during preparing the manuscript. Author also acknowledges Ms. Shruti Mishra, M.Sc. for helping in linguistic editing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A. Vanillin biosynthetic pathways in plants. Planta 245, 1069–1078 (2017). https://doi.org/10.1007/s00425-017-2684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2684-x

Keywords

Navigation