Skip to main content
Log in

Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops.

Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PA:

Proanthocyanidin

ANR:

Anthocyanidin reductase

LAR:

Leucoanthocyanidin reductase

DMACA:

Dimethylaminocinnamaldehyde

References

  • Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11:289–299

    Article  CAS  PubMed  Google Scholar 

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  CAS  PubMed  Google Scholar 

  • Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell AA, El-Zik KM, Thaxton PM (1992) Chemistry, biological significance, and genetic control of proanthocyanidins in cotton (Gossypium spp.). In: Hemingway RW, Laks PE (eds) Plant polyphenols. Synthesis, properties, significance. Springer, USA, pp 571–595

    Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallini E, Matus JT, Finezzo L, Zenoni S, Loyola R, Guzzo F, Schlechter R, Ageorges A, Arce-Johnson P, Tornielli GB (2015) The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol 167:1448–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Xie D-Y, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Tian X, Liu Y, Li Y, Zhang X, Jones BJ, Sun Y, Sun J (2013) Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS One 8:e58820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Li Y, Wang S, Zhang L, Liu Y, Xue F, Sun Y, Wang Y, Sun J (2014) Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). J Exp Bot 65:5759–5769

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez de Colmenares N, Ramírez-Martínez JR, Aldana JO, Ramos-Niño ME, Clifford MN, Pékerar S, Méndez B (1998) Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. J Sci Food Agric 77:368–372

    Article  CAS  Google Scholar 

  • Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421

    Article  CAS  PubMed  Google Scholar 

  • Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinchliffe DJ, Condon BD, Thyssen G, Naoumkina M, Madison CA, Reynolds M, Delhom CD, Fang DD, Li P, McCarty J (2016) The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres. J Exp Bot 67:5461–5471. doi:10.1093/jxb/erw312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovav R, Faigenboim-Doron A, Kadmon N, Hu G, Zhang X, Gallagher JP, Wendel JF (2015) A transcriptome profile for developing seed of polyploid cotton. Plant Genome. doi:10.3835/plantgenome2014.08.0041

    Google Scholar 

  • Ito C, Oki T, Yoshida T, Nanba F, Yamada K, Toda T (2013) Characterisation of proanthocyanidins from black soybeans: isolation and characterisation of proanthocyanidin oligomers from black soybean seed coats. Food Chem 141:2507–2512

    Article  CAS  PubMed  Google Scholar 

  • Jun JH, Liu C, Xiao X, Dixon RA (2015) The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula. Plant Cell 27:2860–2879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  CAS  PubMed  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2012) Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. J Agric Food Chem 60:574–584

    Article  CAS  PubMed  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li TC, Fan HH, Li ZP, Wei J, Lin Y, Cai YP (2012) The accumulation of pigment in fiber related to proanthocyanidins synthesis for brown cotton. Acta Physiol Plant 34:813–818

    Article  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  Google Scholar 

  • Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ (2013) Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biol 13:1–19

    Article  CAS  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55:954–967

    Article  CAS  PubMed  Google Scholar 

  • Mellway RD, Constabel CP (2009) Metabolic engineering and potential functions of proanthocyanidins in poplar. Plant Signal Behav 4:790–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci USA 105:14210–14215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Abeysinghe ISB, He J, He X, Huhman D, Mewan KM, Sumner LW, Yun J, Dixon RA (2013) Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol 161:1103–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel GJ, Dixon RA (2007) Detection and quantification of engineered proanthocyanidins in transgenic plants. Nat Prod Commun 2:1009–1014

    CAS  Google Scholar 

  • Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59:136–149

    Article  CAS  PubMed  Google Scholar 

  • Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32:701–712

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP (2010) Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Vaid M, Katiyar SK (2012) Grape proanthocyanidins inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One 7:e43064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins MP, Paolocci F, Hughes JW, Turchetti V, Allison G, Arcioni S, Morris P, Damiani F (2003) Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54:239–248

    Article  CAS  PubMed  Google Scholar 

  • Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, Romieu C (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verpoorte R (2000) Secondary metabolism. In: Alfermann AW (ed) Metabolic engineering of plant secondary metabolism. Springer, USA, pp 1–29

    Chapter  Google Scholar 

  • Wu K-M, Lu Y-H, Feng H-Q, Jiang Y-Y, Zhao J-Z (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Xiao YH, Yan Q, Ding H, Luo M, Hou L, Zhang M, Yao D, Liu HS, Li X, Zhao J, Pei Y (2014) Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS One 9:e86344

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie D-Y, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91–102

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Lepiniec L, Dubos C (2014a) New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. Plant Signal Behav 9:e28736

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C (2014b) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytol 202:132–144

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–169

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Barry T, Moughan P, Wilson G (1993) Condensed tannin and gossypol concentrations in cottonseed and in processed cottonseed meal. J Sci Food Agric 63:7–15

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Wang H, Peng Q, Tang Y, Xia G, Wu J, Xie D-Y (2015) Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta 241:1075–1089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grasslanz Technology Limited, Palmerston North, New Zealand. We thank Drs. Chenggang Liu and Ji Hyung Jun for their help with Medicago hairy root transformations. We also thank Jimmy Du from the Texas Academy of Mathematics & Science for technical assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Roldan, M. & Dixon, R.A. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum . Planta 246, 323–335 (2017). https://doi.org/10.1007/s00425-017-2682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2682-z

Keywords

Navigation