Skip to main content
Log in

AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

An amaranth DGR gene, induced under abiotic stress, modifies cell wall structure and causes hypersensitivity to ABA and salt when overexpressed in Arabidopsis.

DUF642 is a highly conserved plant-specific family of unknown cell wall-associated proteins. The AhDGR2 gene, coding for a DUF642 protein, was significantly induced in grain amaranth (Amaranthus hypochondriacus) plants subjected to water-deficit and salinity stress, thereby suggesting its participation in abiotic stress tolerance in this plant. A role in development was also inferred from the higher AhDGR2 expression rates detected in young tissues. Subsequent overexpression of AhDGR2 in transgenic Arabidopsis plants (OE-AhDGR2) supported its possible role in development processes. Thus, OE-AhDGR2 plants generated significantly longer roots when grown in normal MS medium. However, they showed a hypersensitivity to increasing concentrations of abscisic acid or NaCl in the medium, as manifested by shorter root length, smaller and slightly chlorotic rosettes, as well as highly reduced germination rates. Contrary to expectations, OE-AhDGR2 plants were intolerant to abiotic stress. Moreover, cell walls in transgenic plants were thinner, in leaves, and more disorganized, in roots, and had significantly modified pectin levels. Lower pectin methylesterase activity detected in leaves of OE-AhDGR2 plants, but not in roots, was contrary to previous reports associating DUF642 proteins and decreased pectin esterification levels in cell walls. Nonetheless, microarray data identified candidate genes whose expression levels explained the phenotypes observed in leaves of OE-AhDGR2 plants, including several involved in cell wall integrity and extension, growth and development, and resistance to abiotic stress. These results support the role of DUF642 proteins in cell wall-related processes and offer novel insights into their possible role(s) in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DGR:

DUF642 L-GalL-responsive gene

DUF:

Domain of unknown function

SOD:

Superoxide dismutase

PME:

Pectin methylesterase

References

  • Abraham-Juárez MJ, Martínez-Hernández A, Leyva-González MA, Herrera-Estrella L, Simpson J (2010) Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. J Exp Bot 61:4055–4067

    Article  PubMed  Google Scholar 

  • Abrahams S, Hayes C, Watson J (1995) Expression patterns of three genes in the stem of lucerne (Medicago sativa). Plant Mol Biol 27:513–528

    Article  CAS  PubMed  Google Scholar 

  • Anderson CT (2016) We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J Exp Bot 67:495–502

    Article  CAS  PubMed  Google Scholar 

  • Ashapkin VV, Kutueva LI, Vanyushin BF (2016) Plant DNA methyltransferase genes: multiplicity, expression, methylation patterns. Biochemistry 81:141–151 (Moscow)

    CAS  PubMed  Google Scholar 

  • Borecký J, Maia IG, Costa ADT, Ježek P, Chaimovich H, Andrade PBM, Vercesi AE, Arruda P (2001) Functional reconstitution of Arabidopsis thaliana plant uncoupling mitochondrial protein (AtPUCP1) expressed in Escherichia coli. FEBS Lett 505:240–244

    Article  PubMed  Google Scholar 

  • Borner GHH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojärvi J, Rayapuram C, Idänheimo N, Hunter K, Kimura S, Merilo E, Vaattovaara A, Oracz K, Kaufholdt D, Pallon A, Anggoro DT, Glów D, Lowe J, Zhou J, Mohammadi O, Puukko T, Albert A, Lang H, Ernst D, Kollist H, Brosché M, Durner J, Borst JW, Collinge DB, Karpiński S, Lyngkjær MF, Robatzek S, Wrzaczek M, Kangasjärvi J (2015) Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet 11:e1005373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruinsma J (1961) A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta 52:578–582

    Article  Google Scholar 

  • Burdiak P, Rusaczonek A, Witon D, Glow D, Karpinski S (2015) Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. J Exp Bot 66:3325–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caselato-Sousa VM, Amaya-Farfán J (2012) State of knowledge on amaranth grain: a comprehensive review. J Food Sci 77:R93–R104

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Cui P, Chen H, Ali S, Zhang S, Xiong L (2013) A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet 9:e1003875

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YH, Shen HL, Hsu PJ, Hwang SG, Cheng WH (2014) N-Acetylglucosamine-1-P uridylyltransferase 1 and 2 are required for gametogenesis and embryo development in Arabidopsis thaliana. Plant Cell Physiol 55:1977–1993

    Article  CAS  PubMed  Google Scholar 

  • Cheng SF, Huang YP, Wu ZR, Hu CC, Hsu YH, Tsai CH (2010) Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BMC Plant Biol 10:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (2016) The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome 9:1–14

    Article  Google Scholar 

  • Colombo PM, Rascio N (1977) Ruthenium red staining for electron microscopy of plant material. J Ultrastruct Res 60:135–139

    Article  CAS  PubMed  Google Scholar 

  • Cook NP, Archer CM, Fawver JN, Schall HE, Rodriguez-Rivera J, Dineley KT, Martí AA, Murray JV (2012) Ruthenium red colorimetric and birefringent staining of amyloid-β aggregates in vitro and in tg2576 mice. ACS Chem Neurosci 4:379–384

    Article  PubMed Central  Google Scholar 

  • Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE (2012) Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell 24:893–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Bem LEV, Vincentz MGA (2010) Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio HA, Ying S, Park J, Knowles VL, Kanno S, Tanoi K, She YM, Plaxton WC (2014) The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. Plant J 80:569–581

    Article  PubMed  Google Scholar 

  • Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genom 12:363

    Article  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz M, Sanchez-Barrena MJ, Gonzalez-Rubio JM, Rodriguez L, Fernandez D, Antoni R, Yunta C, Belda-Palazon B, Gonzalez-Guzman M, Peirats-Llobet M, Menendez M, Boskovic J, Marquez JA, Rodriguez PL, Albert A (2016) Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci USA 113:396–405

    Article  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Badejo AA, Sawa Y, Ishikawa T (2012) Analysis of two l-galactono-1, 4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol 53:592–601

    Article  CAS  PubMed  Google Scholar 

  • García-Armenta E, Téllez-Medina DI, Sánchez-Segura L, Alamilla-Beltrán L, Hernández-Sánchez H, Gutiérrez-López GF (2016) Multifractal breakage pattern of tortilla chips as related to moisture content. J Food Eng 168:96–104

    Article  Google Scholar 

  • Guzmán P (2012) The prolific ATL family of RING-H2 ubiquitin ligases. Plant Signal Behav 7:1014–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Göttler J, Kempa S, Krischke M, Dietrich K, Mueller MJ, Vicente-Carbajosa J, Hanson J, Dröge-Laser W (2015) Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell 27:2244–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant Microbe Interact 20:72–81

    Article  CAS  PubMed  Google Scholar 

  • Huizinga DH, Omosegbon O, Omery B, Crowell DN (2008) Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. Plant Cell 20:2714–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husbands A, Bell EM, Shuai B, Smith HM, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 35:6663–6671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin J, Shi J, Liu B, Liu Y, Huang Y, Yu Y, Dong A (2015) MORF-RELATED GENE702, a reader protein of trimethylated histone H3 lysine 4 and histone H3 lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice. Plant Physiol 168:1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko TS (2010) Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant Physiol 153:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    PubMed  PubMed Central  Google Scholar 

  • Klavons JA, Bennett RD (1986) Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J Agric Food Chem 34:597–599

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YC, Choi D, Park JM (2013) Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing. Int J Mol Sci 14:22782–22795

    Article  PubMed  PubMed Central  Google Scholar 

  • Li DX, Chen WQ, Xu ZH, Bai SN (2015) HDA6-defective mutants show increased expression and acetylation of ETC1 and GL2 with small but significant effects on root epidermis cellular pattern. Plant Physiol 168:1448–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Ho CW, Grierson D (2009) AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J Exp Bot 60:3697–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Douglas CJ (2015) A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signal Behav 10:e1033126

    PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Nonspecific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66:5663–5681

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long R, Yang Q, Kang J, Zhang T, Wang H, Li M, Zhang Z (2013) Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant Cell Rep 32:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature, 3rd edn. W.H. Freeman and Company, New York, pp 310–318

    Google Scholar 

  • Mangeon A, Lin WC, Springer PS (2012) Functional divergence in the Arabidopsis LOB-domain gene family. Plant Signal Behav 7:1544–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63–70

    Article  CAS  Google Scholar 

  • Massange-Sanchez JA, Palmeros-Suarez PA, Martinez-Gallardo NA, Castrillon-Arbeláez PA, Avilés-Arnaut H, Alatorre-Cobos F, Tiessen A, Délano-Frier JP (2015) The novel and taxonomically restricted Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in development and defense. Front Plant Sci 6:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Massange-Sánchez JA, Palmeros-Suaárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP (2016) Overexpression of grain amaranth (Amaranthus hypochondriacus) AhERF or AhDOF transcription factors in Arabidopsis thaliana increases water deficit- and salt-stress tolerance, respectively, via contrasting stress-amelioration mechanisms. PLoS One 11:e0164280

    Article  PubMed  PubMed Central  Google Scholar 

  • McCann MC, Carpita NC (2008) Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 11:314–320

    Article  CAS  PubMed  Google Scholar 

  • Mewalal R, Mizrachi E, Mansfield SD, Myburg A (2014) Cell wall-related proteins of unknown function: missing links in plant cell wall development. Plant Cell Physiol 55:1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T, Hatano K, Miyauchi Y, Suwa Y, Sawano Y, Tonokura M (2014) A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. Plant Physiol 166:766–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemann MCE, Bartrina I, Ashikov A, Weber H, Novák O, Spíchal L, Strnad M, Strasser R, Bakker H, Schmülling T, Werner T (2015) Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci USA 112:291–296

    Article  CAS  PubMed  Google Scholar 

  • Nozaki M, Sugiyama M, Duan J, Uematsu H, Genda T, Sato Y (2012) A missense mutation in the glucosamine-6-phosphate N-acetyltransferase- encoding gene causes temperature-dependent growth defects and ectopic lignin deposition in Arabidopsis. Plant Cell 24:3366–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmeros-Suárez PA, Massange-Sánchez JA, Martínez-Gallardo NA, Montero-Vargas JM, Gómez-Leyva JF, Délano-Frier JP (2015) The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis. Plant Sci 240:25–40

    Article  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pittman JK (2012) Multiple transport pathways for mediating intra-cellular pH homeostasis: the contribution of H+/ion exchangers. Front Plant Sci 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192

    Article  CAS  PubMed  Google Scholar 

  • Ripoll JJ, Rodríguez-Cazorla E, González-Reig S, Andújar A, Alonso-Cantabrana H, Perez-Amador MA, Carbonell J, Martínez-Laborda A, Vera A (2006) PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 289:346–359

    Article  PubMed  Google Scholar 

  • Rojas-González JA, Soto-Súarez M, García-Díaz Á, Romero-Puertas MC, Sandalio LM, Mérida Á, Thormählen I, Geigenberger P, Serrato AJ, Sahrawy M (2015) Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J Exp Bot 66:2673–2689

    Article  PubMed  PubMed Central  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Pandey GK (2016) Expansion and function of repeat domain proteins during stress and development in plants. Front Plant Sci 6:1218

    PubMed  PubMed Central  Google Scholar 

  • Shin K, Lee S, Song WY, Lee RA, Lee I, Ha K, Koo JC, Park SK, Nam HG, Lee Y, Soh MS (2015) Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol 56:572–582

    Article  CAS  PubMed  Google Scholar 

  • Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest A (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination; metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: an emerging field. J Exp Bot 63:1525–1542

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanveer T, Shaheen K, Parveen S, Kazi AG, Ahmad P (2014) Plant secretomics: identification, isolation, and biological significance under environmental stress. Plant Signal Behav 9:e29426

    Article  PubMed Central  Google Scholar 

  • Tarte V, Seok HY, Woo DH, Le D, Tran H, Baik JW, In Soon Kang IS, Sun-Young Lee SY, Chung T, Moon YH (2015) Arabidopsis Qc-SNARE gene AtSFT12 is involved in salinity and osmotic stress responses and Na+ accumulation in vacuoles. Plant Cell Rep 34:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Tavares B, Domingos P, Dias PN, Feijó JA, Bicho A (2011) The essential role of anionic transport in plant cells: the pollen tube as a case study. J Exp Bot 62:2273–2298

    Article  CAS  PubMed  Google Scholar 

  • Trono D, Laus MN, Soccio M, Alfarano M, Pastore D (2015) Modulation of potassium channel activity in the balance of ROS and ATP Production by Durum wheat mitochondria-an amazing defense tool against hyperosmotic stress. Front Plant Sci 6:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Lobo A, Roujol D, Zúñiga-Sánchez E, Albenne C, Piñero D, de Buen AG, Jamet E (2012) The highly conserved spermatophyte cell wall DUF642 protein family: phylogeny and first evidence of interaction with cell wall polysaccharides in vitro. Mol Phylogenet Evol 63:510–520

    Article  PubMed  Google Scholar 

  • Vilches-Barro A, Maizel A (2015) Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana. Curr Opin Plant Sci 23:31–38

    Article  Google Scholar 

  • Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, Li Y, Huang Y, Feng Y, Gong H, Li Y, Fang G, Tang H, Li Y (2015) Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot 66:973–987

    Article  PubMed  Google Scholar 

  • Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese J (2014) Propionate metabolism in yeast and plants. Doctoral Dissertation. Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

  • Yang T, Echols M, Martin A, Bar-Peled M (2010) Identification and characterization of a strict and a promiscuous N-acetylglucosamine-1-P uridylytransferase in Arabidopsis. Biochem J 430:275–284

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Feng H, Yu Y, Dong A, Shen W-H (2013) SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS ONE 8:e56537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Behrens I, Zimmermann R, Ludwig Y, Hey S, Hochholdinger F (2015) LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1. J Exp Bot 66:3855–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga-Sánchez E, Gamboa-de Buen A (2012) The two DUF642 At5g11420 and At4g32460-encoded proteins interact in vitro with the AtPME3 catalytic domain. In: Cai J (ed) Protein interactions, Book 1. InTech, Rijeka, pp 119–142

    Google Scholar 

  • Zúñiga-Sánchez E, Soriano D, Martínez-Barajas E, Orozco-Segovia A, Gamboa-deBuen A (2014) BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methylesterase regulation during Arabidopsis thaliana seed germination and plant development. BMC Plant Biol 14:338

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Acknowledgements are due to The National Council for Science and Technology (CONACyT, México; Grant No. 156912, to JPDF), to the European Commission 6th Framework Programme, AMARANTH: FUTURE FOOD (Contract No. 032263, to JPDF), to México Tierra de Amaranto A. C. and to The Deborah Presser-Velder Foundation for financial support. JMS and PAPS were supported by postgraduate scholarships (Codes Nos. 234771 and 232807, respectively), granted by CONACyT, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Délano-Frier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmeros-Suárez, P.A., Massange-Sánchez, J.A., Sánchez-Segura, L. et al. AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. Planta 245, 623–640 (2017). https://doi.org/10.1007/s00425-016-2635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2635-y

Keywords

Navigation