Skip to main content
Log in

Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants.

Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem 43:746–753

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Yassin NBM, Park JS, Choi A, Herr J, Carlson JE (2011) Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Sci 181:249–257

    Article  CAS  PubMed  Google Scholar 

  • Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal Biochem 302:305–312

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bomati EK, Noel JP (2005) Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 17:1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JA, Grima-Pettenati J (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1297–1313

    Article  CAS  PubMed  Google Scholar 

  • Chao N, Liu S-X, Liu B-M, Li N, Jiang X-N, Gai Y (2014) Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa. Planta 240:1097–1112

    Article  CAS  PubMed  Google Scholar 

  • Consortium PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Delano WL (2002) The PyMOL molecular graphics system (DeLano Scientific). http://www.pymol.org

  • Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Escamilla-Treviño LL, Shen H, Uppalapati SR, Ray T, Tang Y, Hernandez T, Yin Y, Xu Y, Dixon RA (2010) Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol 185:143–155

    Article  PubMed  Google Scholar 

  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau J-P, Barrière Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    CAS  PubMed  Google Scholar 

  • Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Hua C, Linling L, Shuiyuan C, Fuliang C, Feng X, Yan W, Dezhi J, Honghui Y, Conghua W (2014) Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: effects on lignification and environmental stresses. Afr J Biotechnol 11:6780–6794

    Google Scholar 

  • Joernvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013

    Article  CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Jörnvall H, Persson B (2002) Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci 11:636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkonen A, Koutaniemi S (2010) Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol 52:176–185

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103:230–235

    Article  CAS  PubMed  Google Scholar 

  • Lacombe E, Hawkins S, Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  CAS  PubMed  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Leple J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Lüderitz T, Grisebach H (1981) Enzymic synthesis of lignin precursors comparison of cinnamoyl-CoA reductase and cinnamyl alcohol: NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur j biochem 119:115–124

    Article  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma Q-H (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58:2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Ma Q-H, Tian B (2005) Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biol Chem 386:553–560

    Article  CAS  PubMed  Google Scholar 

  • Moummou H, Kallberg Y, Tonfack LB, Persson B, Van der Rest B (2012) The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biol 12:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun J-H, Kwon S-J, Yang T-J, Seol Y-J, Jin M, Kim J-A, Lim M-H, Kim JS, Baek S, Choi B-S (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed  PubMed Central  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    CAS  PubMed  Google Scholar 

  • Oppermann UC, Persson B, Filling C, Jörnvall H (1996) Structure-function relationships of SDR hydroxysteroid dehydrogenases. Enzymology and molecular biology of carbonyl metabolism 6. Springer, pp 403–415

  • Pan H, Zhou R, Louie GV, Mühlemann JK, Bomati EK, Bowman ME, Dudareva N, Dixon RA, Noel JP, Wang X (2014) Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell 26:3709–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-H, Mei C, Pauly M, Ong RG, Dale BE, Sabzikar R, Fotoh H, Nguyen T, Sticklen M (2012) Downregulation of maize cinnamoyl-coenzyme a reductase via RNA interference technology causes brown midrib and improves ammonia fiber expansion-pretreated conversion into fermentable sugars for biofuels. Crop Sci 52:2687–2701

    Article  CAS  Google Scholar 

  • Persson B, Krook M, Jornvall H (1991) Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem 200:537–543

    Article  CAS  PubMed  Google Scholar 

  • Prasad NK, Vindal V, Kumar V, Kabra A, Phogat N, Kumar M (2011) Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase. J Mol Model 17:533–541

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  PubMed  Google Scholar 

  • Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau JP (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Sonawane P, Patel K, Vishwakarma RK, Singh S, Khan BM (2013a) In Silico mutagenesis and docking studies of active site residues suggest altered substrate specificity and possible physiological role of Cinnamoyl CoA Reductase 1 (Ll-CCRH1). Bioinformation 9:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonawane P, Patel K, Vishwakarma RK, Srivastava S, Singh S, Gaikwad S, Khan BM (2013b) Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala. Int J Biol Macromol 60:33–38

    Article  CAS  PubMed  Google Scholar 

  • Stöekigt J, Zenk M (1975) Chemical syntheses and properties of hydroxycinnamoyl-coenzyme A derivatives. Zeitschrift für Naturforschung C 30:352–358

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Tang AY (2014) Transgenic woody plants for biofuel. J For Res 25:225–236

    Article  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci 107:472–477

    Article  CAS  PubMed  Google Scholar 

  • Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172:47–62

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Louie GV, Bowman ME, Smith KF, Noel JP (2010) Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 22:3357–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Van Acker R, Leplé J-C, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MC (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 111:845–850

    Article  PubMed  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  Google Scholar 

  • Van der Rest B, Danoun S, Boudet A-M, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411

    Article  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Akiyama T, Bonawitz ND, Li X, Ralph J, Chapple C (2010) Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants. Plant Cell 22:1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Luo D, Xu D, Zeng M, Cui X, Li L, Huang H (2015) CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. Plant J 83:375–387

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Dixon RA (2014) Altering the cell wall and its impact on plant disease: from forage to bioenergy. Annu rev phytopathol 52:69–91

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon RA (2010) Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci 107:17803–17808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation [NSF 31300498 to Y.G.], High Technology Research and Development 863 Program [2011AA100203 to X.N.JIANG.], [Grant Numbers J1103516, J1310005, ITR 13047] the Basic Science Basement Facility Buildup and Talent Training Program Project from National Natural Science Foundation of China (NSFC) and PCSIRT, and the Fundamental Research Funds for the Central Universities [BLYJ201504 to N.C.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Gai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2591_MOESM1_ESM.pdf

Online Resource 1 Primers used for cloning PtoCCR and PtoCCR-like genes from P. tomentosa. Online Resource 2 Putative CCR proteins used for phylogenetic analysis. Online Resource 3 Conditions used for HPLC–MS to identify hydroxycinnamoyl-coA esters. Online Resource 4 Homology matrix of 12 sequences (DNAman). Online Resource 5 Identification of chemically synthesized hydroxycinnamoyl-CoA esters by HPLC–MS. (A–D) Chromatographs of caffeoyl-CoA, feruloyl-CoA, p-coumaroyl-CoA, and sinapoyl-CoA, respectively. (E–H) Mass spectra of caffeoyl-CoA, feruloyl-CoA, p-coumaroyl-CoA, and sinapoyl-CoA, respectively. Online Resource 6 Summary of active sites in CCRs and corresponding amino acids in 11 PtoCCR and PtoCCR-like proteins. Online Resource 7 Expression profiles of 11 PtoCCR and PtoCCR-like genes in different tissues from P. tomentosa based on microarray datasets. The transcript abundance is indicated by the blue–red gradient, as shown in the legend. Tissues or specific parts of plants are indicated. Online Resource 8 Phylogenetic trees of CCRs from core dicots. (A) Phylogenetic tree of CCRs from eurosids II. (B) Phylogenetic tree of CCRs from eurosids I. AtrCCR was used as the root. Recent whole genome duplications are marked with blue-filled ellipses (PDF 570 kb)

Online Resource 9 Catalytic residues for all detected proposed genuine CCRs in plant kingdom (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, N., Li, N., Qi, Q. et al. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta 245, 61–75 (2017). https://doi.org/10.1007/s00425-016-2591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2591-6

Keywords

Navigation