Skip to main content

Advertisement

Log in

Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis.

Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Leaf CO2 assimilation

C i :

Intercellular CO2 concentration

ETR:

Apparent electron transport rate

F V/F M :

Maximum quantum efficiency of PSII

g s :

Stomatal conductance

GSH:

Glutathione

GSNO:

S-Nitrosoglutathione

k :

Instantaneous carboxylation efficiency

LDM:

Leaf dry mass

NO:

Nitric oxide

NPQ:

Non-photochemical quenching

PEG:

Polyethylene glycol

PPFD:

Photosynthetic photon flux density

PSII:

Photosystem II

RDM:

Root dry mass

RWC:

Relative water content

RSNO:

S-Nitrosothiol

WD:

Water deficit

ϕ PSII :

Effective quantum efficiency of PSII

References

  • Aftab T, Khan MM, Naeem M, Idrees M, Moinuddin Teixeira, da Silva JA, Ram M (2012) Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminum toxicity. Ecotox Environ Safe 80:60–68

    Article  CAS  Google Scholar 

  • Baker NR (2008) A probe of photosynthesis: in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AM, Guidorizi KA, Catuchi TA, Marques TA, Ribeiro RV, Souza GM (2015) Biomass and bioenergy partitioning of sugarcane plants under water deficit. Acta Physiol Plant 37:137–142

    Article  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB (2014) Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Astier J, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Liu W, Wang WS, Fu ZW, Han TT, Lu YT (2015) Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS One. doi:10.1371/journal.pone.0131599

    Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant Cell Environ 34:1803–1818

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Lanteri ML, García-Mata C, Have AT, Laxalt AM, Graziano M, Lamattina L (2007) Nitric oxide functions as intermediate in auxin, abscisic acid and lipid signaling pathways. In: Lamattina L, Polacco J (eds) Nitric oxide in plant growth, development and stress physiology, plant cell monographs, vol 5. Springer, Berlin, pp 113–130

    Chapter  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • De Oliveira MG, Shishido SM, Seabra AB, Morgon NH (2002) Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release. Phys Chem A 106:8963–8970

    Article  Google Scholar 

  • De Souza GFP, Yokoyama-Yasunaka JKU, Seabra AB, Miguel DC, de Oliveira MG, Uliana SRB (2006) Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: implications for the treatment of cutaneous leishmaniosis. Nitric Oxide 15:209–216

    Article  PubMed  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJW, Peton N, Mundree SG, Rafudeen MS (2015) A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242:407–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foresi N, Mayta ML, Lodeyro AF, Scuffi D, Correa-Aragunde N, García-Mata C, Casalongué C, Carrillo N, Lamattina L (2015) Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J 82:806–821

    Article  CAS  PubMed  Google Scholar 

  • Frungillo L, De Oliveira JF, Saviani EE, Oliveira HC, Martínez MC, Salgado I (2013) Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines. Biochim Biophys Acta 1827:239–247

    Article  CAS  PubMed  Google Scholar 

  • Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I (2014) S-Nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun 5:5401–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • Gouvea CMCP, Souza JF, Magalhães ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  CAS  Google Scholar 

  • Jamaux I, Steinmetz A, Belhassen E (1997) Looking for molecular and physiological markers of osmotic adjustment in sunflower. New Phytol 137:117–127

    Article  CAS  Google Scholar 

  • Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 4:2393–2401

    Article  Google Scholar 

  • Machado RS, Ribeiro RV, Marchiori PER, Machado DFSP, Machado EC, Landell MGA (2009) Respostas biométricas e fisiológicas ao déficit hídrico em cana-de-açúcar em diferentes fases fenológicas. Pesq Agropec Bras 44:1575–1582

    Article  Google Scholar 

  • Misra NA, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL (2014) Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 39:35–45

    Article  CAS  PubMed  Google Scholar 

  • Ördög A, Wodala B, Rózsavölgyi T, Tari Irma, Horváth F (2013) Regulation of guard cell photosynthetic electron transport by nitric oxide. J Exp Bot 64:1357–1366

    Article  PubMed  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Habash D, Araus JL (2004) Optimisation of water use by plants. Ann Appl Biol 144:125–126

    Article  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. PNAS 101:4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh P (2000) Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 85:83–89

    Article  Google Scholar 

  • Ribeiro RV, Machado RS, Machado EC, Machado DFSP, Magalhães Filho JR, Landell MGA (2013) Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Exp Agric 49:212–224

    Article  Google Scholar 

  • Sales CRG, Ribeiro RV, Silveira JAG, Machado EC, Martins OM, Lagôa AMMA (2013) Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol Biochem 73:326–336

    Article  CAS  PubMed  Google Scholar 

  • Sales CRG, Marchiori PER, Machado RS, Fontenele AV, Machado EC, Silveira JAG, Ribeiro RV (2015) Photosynthetic and antioxidant responses to drought during the sugarcane ripening. Photosynthetica 53:547–554

    Article  CAS  Google Scholar 

  • Salgado I, Martínez MC, Oliveira HC, Frungillo L (2013) Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses. Braz J Bot 36:89–98

    Article  Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma KK (2015) NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Sci 239:44–55

    Article  CAS  PubMed  Google Scholar 

  • Santos MC, Seabra AB, Pelegrino MT, Haddad PS (2016) Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery. Appl Surf Sci 367:26–35

    Article  CAS  Google Scholar 

  • Santos-Filho PR, Vitor SC, Frungillo L, Saviani EE, Oliveira HC, Salgado I (2012) Nitrate reductase and nitric oxide-dependent activation of sinapoylglucose: malate sinapoyltransferase in leaves of Arabidopsis thaliana. Plant Cell Physiol 53:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Sanz L, Fernández-Marcos M, Modrego A, Lewis DR, Muday GK, Pollmann S, Dueñas M, Santos-Buelga C, Lorenzo O (2014) Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiol 166:1972–1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarruge JR (1975) Soluções nutritivas. Summa Phytopathol 3:231–233

    Google Scholar 

  • Seabra AB, de Oliveira MG (2004) Poly (vinyl alcohol) and poly (vinyl pyrrolidone) blended films for local nitric oxide release. Biomaterials 25:3773–3782

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  CAS  PubMed  Google Scholar 

  • Shishido SM, Seabra AB, Loh W, De Oliveira MG (2003) Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127gel: potential uses for local and controlled nitric oxide release. Biomaterials 24:3543–3553

    Article  CAS  PubMed  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977–996

    Article  PubMed  PubMed Central  Google Scholar 

  • Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138:360–371

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Lei Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50:775–778

    Article  CAS  Google Scholar 

  • Vitor SC, Duarte GT, Saviani EE, Vincentz MGA, Oliveira HC, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618

    Article  CAS  PubMed  Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146:1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LT, Qi YP, Chen LS, Sang W, Lin XJ, Wu YL, Yang CJ (2012) Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot 82:1–13

    Article  CAS  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NBB, Bihan TL, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-Nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cardosa L, Broderick M, Fein H, Davies IR (2000) Novel calibration method for nitric oxide microsensors by stoichiometrical generation of nitric oxide from SNAP. Electroanal 12:425–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support (BIOEN Program, Grant no. 2008/57519-2) provided by the São Paulo Research Foundation (FAPESP, Brazil) as well as the scholarships to NMS and MTP (Grant no. 2012/19167-0 and 2015/00393-8). LF is a European Molecular Biology Organization (EMBO)—Long Term Fellow (no. 420/2015). The authors also acknowledge the fellowships (ABS; IS; ECM; RVR) and scholarships (FCCM and MTM) granted by the National Council for Scientific and Technological Development (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Ribeiro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, N.M., Frungillo, L., Marcos, F.C.C. et al. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta 244, 181–190 (2016). https://doi.org/10.1007/s00425-016-2501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2501-y

Keywords

Navigation