Skip to main content
Log in

Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The stilbene synthase gene VqSTS6, from Chinese wild type Vitis quinquangularis accession Danfeng-2, increases the resveratrol content and pathogen resistance of transgenic plants of V. vinifera Thompson Seedless.

This study successfully created transgenic plants of V. vinifera Thompson Seedless which overexpressed VqSTS6, cloned from Chinese wild type V. quinquangularis accession Danfeng-2. Western blot and qRT-PCR showed a variable range in transcript levels among transgenic lines. The resistance to powdery mildew (Uncinula necator) was particularly enhanced in lines most highly expressing VqSTS6. Compared with the non-transformed controls, trans-resveratrol and other stilbene compounds were significantly increased in the transgenic lines. The correlation between high resveratrol content and high pathogen resistance in transgenic grapes is discussed. We hypothesize that the fruit-specific, highly expressed gene VqSTS6 from Chinese wild V. quinquangularis accession Danfeng-2, is directly involved in the resveratrol synthesis pathway in grapes, and plays an important role in the plant’s defense against pathogens. Genetic transformation of VqSTS6 explored the potential of the wild Chinese grape species for use in breeding, the results of which would raise both the disease resistance and the fruit quality of V. vinifera grapevines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PEM:

Pro-embryogenic masses

SE:

Somatic embryo

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

AC:

Activated charcoal

BAP:

6-Benzylaminopurine

PM:

Powdery mildew

HPLC:

High-performance liquid chromatography

DW:

Dry weight

References

  • Adrian M, Jeandet P (2006) Resveratrol as an antifungal agent. In: Aggarwal BB, Shishodia S (eds) Resveratrol in health and disease. CRC Press, Boca Raton, pp 475–497

    Google Scholar 

  • Aguero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8

    Google Scholar 

  • Anekonda TS (2006) Resveratrol—a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    Article  CAS  PubMed  Google Scholar 

  • Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharm 224:274–283

    Article  CAS  Google Scholar 

  • Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:e2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornhoff B-A, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant cell reports 24:433–438

    Article  CAS  PubMed  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2008) Grapes. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic temperate fruits and nuts. Wiley-Blackwell, Oxford, pp 189–232. doi:10.1002/9781405181099.k0407

    Chapter  Google Scholar 

  • Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Christine K, Lam CN, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47:1017–1021

    Article  Google Scholar 

  • Dai L, Zhou Q, Li R, Du Y, He J, Wang D, Cheng S, Zhang J, Wang Y (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. PCTOC 121:397–412

    Article  CAS  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2–12

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Manyakhin AY, Zhuravlev YN, Kiselev KV (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88:727–736

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. PCTOC 92:197–206

    Article  CAS  Google Scholar 

  • Franks T, Powell K, Choimes S, Marsh E, Iocco P, Sinclair B, Ford C, Van Heeswijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195

    Article  CAS  PubMed  Google Scholar 

  • Galambos A, Zok A, Kuczmog A, Oláh R, Putnoky P, Ream W, Szegedi E (2013) Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. Plant Cell Rep 32:1751–1757

    Article  CAS  PubMed  Google Scholar 

  • Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203–214

    Article  CAS  PubMed  Google Scholar 

  • Gomès E, Coutos-Thévenot P (2009) Molecular aspects of grapevine-pathogenic fungi interactions. In: Grapevine molecular physiology and biotechnology. Springer, New York, pp 407–428

  • Gray S, Meredith C (1992) Grape. In: Hammerschlag F, Litz R (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 229–262

  • Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248:415–423

    Article  CAS  PubMed  Google Scholar 

  • Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335

    Article  CAS  PubMed  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591

    Article  CAS  PubMed  Google Scholar 

  • He P, Wang Y, Wang G, Ren Z, He C (1991) The studies on the disease-resistance of Vitis wild species originated in China. Sci Agr Sinica 24:50–56

    Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe In 13:551–562

    Article  CAS  Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Noel JP (2000) Mechanism of chalcone synthase. Pka of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem 275:39640–39646

    Article  CAS  PubMed  Google Scholar 

  • King RE, Bomser JA, Min DB (2006) Bioactivity of resveratrol. Comp Rev Food Sci F 5:65–70

    Article  CAS  Google Scholar 

  • Kobayashi S, Ding C, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Langcake P, Pryce R (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152

    Article  CAS  PubMed  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT, Ionescu M (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol Plant Microbe In 27:244–254

    Article  CAS  Google Scholar 

  • Liu S, Hu Y, Wang X, Zhong J, Lin Z (2006) High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J Agric Food Chem 54:8082–8085

    Article  CAS  PubMed  Google Scholar 

  • Méchin V, Damerval C, Zivy M (2007) Total protein extraction with TCA-acetone. In: Thiellement H, Zivy M, Damerval C, Méchin V (eds) Plant Proteomics. Springer, New York, pp 1–8. doi:10.1385/1-59745-227-0:1

    Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci Bangalore 80:758–763

    CAS  Google Scholar 

  • Nakano M, Hoshino Y, Mii M (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes mediated transformation of embryogenic calli. J Exp Bot 45:649–656

    Article  CAS  Google Scholar 

  • Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I (2012) The grapevine root-specific aquaporin VvPIP2; 4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter A, Jacobsen H-J, De Kathen A, De Lorenzo G, Briviba K, Hain R, Ramsay G, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  • Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54:4633–4640

    Article  PubMed  Google Scholar 

  • Rupprich N, Kindl H (1978) Stilbene synthases and stilbenecarboxylate synthases. I Biol Chem 359:165–172

    CAS  Google Scholar 

  • Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    Article  CAS  PubMed  Google Scholar 

  • Schöppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259:6806–6811

    PubMed  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, De Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009

    Article  CAS  PubMed  Google Scholar 

  • Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    Article  CAS  PubMed  Google Scholar 

  • Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J, Wang D, Wang Y (2014) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Physiol Biochem 74:24–32

    Article  CAS  PubMed  Google Scholar 

  • Shumakova OA, Manyakhin AY, Kiselev KV (2011) Appl Biochem Biotech 165:1427–1436

  • Suh DY, Kagami J, Fukuma K, Sankawa U (2000) Evidence for catalytic cysteine–histidine dyad in chalcone synthase. Biochem Biophys Res Co 275:725–730

    Article  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen H, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Matsumoto S, Cain P, Scott N (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    Article  CAS  PubMed  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal J, Kikkert J, Wallace P, Reisch B (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    Article  CAS  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’(Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82

    Article  CAS  PubMed  Google Scholar 

  • Vishnevetsky J, Flaishman M, Cohen Y, Elad I, Velcheva M, Hanania U, Perl A (2009) Transgenic disease resistant banana. World Patent

  • Wan Y, Schwaninger H, He P, Wang Y (2015) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. VITIS J Grapevine Res 46:132

    Google Scholar 

  • Wang Y, He P (1997) Study on inheritance of leaves’ resistance to powdery mildew in Chinese native wild. VITIS 30:19–25

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoë ampelina (de Bary) shear. HortScience 33:123–126

    Google Scholar 

  • Wang X, Wang Y, Zhang C, Zhang J (2007) Isolation and characterization of cDNA encoding stilbene synthases from Chinese wild Vitis pseudoreticulata. VITIS 46:104–109

    CAS  Google Scholar 

  • Xu C, Yagiz Y, Hsu W-Y, Simonne A, Lu J, Marshall MR (2014) Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J Agric Food Chem 62:6640–6649

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong G-Y (2013) Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS ONE 8:e69463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson seedless. Plant Cell Tissue Organ Cult (PCTOC) 118:157–168

    Article  CAS  Google Scholar 

  • Zhou Q, Du Y, Cheng S, Li R, Zhang J, Wang Y (2015) Resveratrol derivatives in four tissues of six wild Chinese grapevine species. N Z J Crop Horticult Sci 43:1–9

  • Zhu YJ, Agbayani R, Jackson MC, Tang C, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China. The research was done with Grants from the National Science Foundation of China (Grant No. 31372039) and from the Program for Innovative Research Team of Grape Germplasm Resource and Breeding (2013KCT-25). The authors thank Dr. Alexander (Sandy) Lang from RESCRIPT Co. (New Zealand) for useful comments and language editing which have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxia Zhang or Yuejin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Xie, X., Xu, Y. et al. Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis . Planta 243, 1041–1053 (2016). https://doi.org/10.1007/s00425-015-2459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2459-1

Keywords

Navigation