Skip to main content
Log in

Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Chemical imaging of pollen by vibrational microspectroscopy enables characterization of pollen ultrastructure, in particular phenylpropanoid components in grain wall for comparative study of extant and extinct plant species.

A detailed characterization of conifer (Pinales) pollen by vibrational microspectroscopy is presented. The main problems that arise during vibrational measurements were scatter and saturation issues in Fourier transform infrared (FTIR), and fluorescence and penetration depth issues in Raman. Single pollen grains larger than approx. 15 µm can be measured by FTIR microspectroscopy using conventional light sources, while smaller grains may be measured by employing synchrotron light sources. Pollen grains that were larger than 50 µm were too thick for FTIR imaging since the grain constituents absorbed almost all infrared light. Chemical images of pollen were obtained on sectioned samples, unveiling the distribution and concentration of proteins, carbohydrates, sporopollenins and lipids within pollen substructures. The comparative analysis of pollen species revealed that, compared with other Pinales pollens, Cedrus atlantica has a higher relative amount of lipid nutrients, as well as different chemical composition of grain wall sporopollenin. The pre-processing and data analysis, namely extended multiplicative signal correction and principal component analysis, offer simple estimate of imaging spectral data and indirect estimation of physical properties of pollen. The vibrational microspectroscopy study demonstrates that detailed chemical characterization of pollen can be obtained by measurement of an individual grain and pollen ultrastructure. Measurement of phenylpropanoid components in pollen grain wall could be used, not only for the reconstruction of past environments, but for assessment of diversity of plant species as well. Therefore, analysis of extant and extinct pollen species by vibrational spectroscopies is suggested as a valuable tool in biology, ecology and palaeosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5):1141–1153. doi:10.1007/s00425-006-0295-z

    Article  CAS  PubMed  Google Scholar 

  • Ahlers F, Thom I, Lambert J, Kuckuk R, Wiermann R (1999) H-1 NMR analysis of sporopollenin from Typha angustifolia. Phytochemistry 50(6):1095–1098

    Article  CAS  Google Scholar 

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777. doi:10.1366/0003702894202201

    Article  CAS  Google Scholar 

  • Barron C, Parker ML, Mills EN, Rouau X, Wilson RH (2005) FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 220(5):667–677. doi:10.1007/s00425-004-1383-6

    Article  CAS  PubMed  Google Scholar 

  • Bassan P, Kohler A, Martens H, Lee J, Byrne HJ, Dumas P, Gazi E, Brown M, Clarke N, Gardner P (2010a) Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277

    Article  CAS  PubMed  Google Scholar 

  • Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P (2010b) RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. J Biophotonics 3:609–620

    Article  CAS  PubMed  Google Scholar 

  • Blokker P, Boelen P, Broekman R, Rozema J (2006) The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy. Plant Ecol 182(1–2):197–207. doi:10.1007/s11258-005-9026-y

    Google Scholar 

  • Boyain-Goitia AR, Beddows DCS, Griffiths BC, Telle HH (2003) Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy. Appl Opt 42(30):6119. doi:10.1364/ao.42.006119

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sun S, Zhou Q (2013) Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging. Anal Bioanal Chem 405(29):9385–9400. doi:10.1007/s00216-013-7366-3

    Article  CAS  PubMed  Google Scholar 

  • Chylińska M, Szymańska-Chargot M, Zdunek A (2014) Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods 10(14):1–9

    Google Scholar 

  • Dell’Anna R, Lazzeri P, Frisanco M, Monti F, Malvezzi Campeggi F, Gottardini E, Bersani M (2009) Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal Bioanal Chem 394(5):1443–1452. doi:10.1007/s00216-009-2794-9

    Article  PubMed  Google Scholar 

  • Dokken KM, Davis LC, Marinkovic NS (2005) Use of infrared microspectroscopy in plant growth and development. Appl Spectrosc Rev 40(4):301–326. doi:10.1080/05704920500230898

    Article  Google Scholar 

  • Dumas P, Polack F, Lagarde B, Chubar O, Giorgetta JL, Lefrançois S (2006) Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Phys Technol 49:152–160

    Article  CAS  Google Scholar 

  • Fackler K, Thygesen LG (2013) Microspectroscopy as applied to the study of wood molecular structure. Wood Sci Technol 47(1):203–222. doi:10.1007/s00226-012-0516-5

    Article  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140(4):1246–1254. doi:10.1104/pp.105.066993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7(9):1694–1708. doi:10.1038/nprot.2012.092

    Article  CAS  PubMed  Google Scholar 

  • Gorzsas A, Stenlund H, Persson P, Trygg J, Sundberg B (2011) Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J Cell Mol Biol 66(5):903–914. doi:10.1111/j.1365-313X.2011.04542.x

    Article  CAS  Google Scholar 

  • Gottardini E, Rossi S, Cristofolini F, Benedetti L (2007) Use of Fourier transform infrared (FT-IR) spectroscopy as a tool for pollen identification. Aerobiologia 23(3):211–219

    Article  Google Scholar 

  • Ilari JL, Martens H, Isaksson T (1988) Determination of particle-size in powders by scatter correction in diffuse near-infrared reflectance. Appl Spectrosc 42(5):722–728. doi:10.1366/0003702884429058

    Article  CAS  Google Scholar 

  • Ivleva NP, Niessner R, Panne U (2005) Characterization and discrimination of pollen by Raman microscopy. Anal Bioanal Chem 381(1):261–267. doi:10.1007/s00216-004-2942-1

    Article  CAS  PubMed  Google Scholar 

  • Jungfermann C, Ahlers F, Grote M, Gubatz S, Steuernagel S, Thom I, Wetzels G, Wiermann R (1997) Solution of sporopollenin and reaggregation of a sporopollenin-like material: a new approach in the sporopollenin research. J Plant Physiol 151(5):513–519

    Article  CAS  Google Scholar 

  • Kohler A, Kirschner C, Oust A, Martens H (2005) Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Appl Spectrosc 59(6):707–716. doi:10.1366/0003702054280649

    Article  CAS  PubMed  Google Scholar 

  • Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta 1758(7):814–829. doi:10.1016/j.bbamem.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Laucks ML, Roll G, Schweigers G, Davis EJ (2000) Physical and chemical (Raman) characterization of bioaerosols-pollen. J Aerosol Sci 31:307–319

    Article  CAS  Google Scholar 

  • Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol 2:504–517. doi:10.1093/gbe/evq036

    Article  PubMed Central  PubMed  Google Scholar 

  • Lomax BH, Fraser WT, Harrington G, Blackmore S, Sephton MA, Harris NBW (2012) A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth Planet Sci Lett 353:22–28. doi:10.1016/j.epsl.2012.07.039

    Article  Google Scholar 

  • Lukacs R, Blumel R, Zimmermann B, Bagcoglu M, Kohler A (2015) Recovery of absorbance spectra of micrometer-sized biological and inanimate particles. Analyst. doi:10.1039/C5AN00401B

    Google Scholar 

  • Martens H, Stark E (1991) Extended multiplicative signal correction and spectral interference subtraction—new preprocessing methods for near-infrared spectroscopy. J Pharm Biomed 9(8):625–635. doi:10.1016/0731-7085(91)80188-F

    Article  CAS  Google Scholar 

  • Pappas CS, Tarantilis PA, Harizanis PC, Polissiou MG (2003) New method for pollen identification by FT-IR spectroscopy. Appl Spectrosc 57(1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Pappas D, Smith BW, Winefordner JD (2004) Raman imaging for two-dimensional chemical analysis. Appl Spectrosc Rev 35(1–2):1–23. doi:10.1081/asr-100101219

    Article  Google Scholar 

  • Parodi G, Dickerson P, Cloud J (2013) Pollen identification by Fourier transform infrared photoacoustic spectroscopy. Appl Spectrosc 67(3):342–348. doi:10.1366/12-06622

    Article  CAS  PubMed  Google Scholar 

  • Schulte F, Lingott J, Panne U, Kneipp J (2008) Chemical characterization and classification of pollen. Anal Chem 80(24):9551–9556. doi:10.1021/Ac801791a

    Article  CAS  PubMed  Google Scholar 

  • Schulte F, Mader J, Kroh LW, Panne U, Kneipp J (2009) Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy. Anal Chem 81(20):8426–8433

    Article  CAS  PubMed  Google Scholar 

  • Schulte F, Panne U, Kneipp J (2010) Molecular changes during pollen germination can be monitored by Raman microspectroscopy. J Biophotonics 3(8–9):542–547. doi:10.1002/jbio.201000031

    Article  CAS  PubMed  Google Scholar 

  • Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43(1):13–25. doi:10.1016/j.vibspec.2006.06.001

    Article  CAS  Google Scholar 

  • Wehling K, Niester C, Boon JJ, Willemse MTM, Wiermann R (1989) P-coumaric acid—a monomer in the sporopollenin skeleton. Planta 179(3):376–380

    Article  CAS  PubMed  Google Scholar 

  • Willis KJ, Feurdean A, Birks HJ, Bjune AE, Breman E, Broekman R, Grytnes JA, New M, Singarayer JS, Rozema J (2011) Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. New Phytol 192(2):553–560. doi:10.1111/j.1469-8137.2011.03815.x

    Article  CAS  PubMed  Google Scholar 

  • Yu P (2011) Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J Synchrotron Radiat 18(Pt 5):790–801. doi:10.1107/S0909049511023727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann B (2010) Characterization of pollen by vibrational spectroscopy. Appl Spectrosc 64(12):1364–1373

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann B, Kohler A (2014) Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS One 9(4):e95417. doi:10.1371/journal.pone.0095417

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elin Ørmen from the Microscopy lab, Imaging Centre—NMBU, for the help with the SEM measurements, and Paul Dumas from the SMIS beamline, Synchrotron SOLEIL, for the help with the FTIR synchrotron measurements. The research was supported by the Norwegian Research Council (ISP project No. 216687), by the SOLEIL, French national synchrotron facility (project No. 20120345), and by the European Commission through the Seventh Framework Programme (FP7-PEOPLE-2012-IEF project No. 328289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, B., Bağcıoğlu, M., Sandt, C. et al. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242, 1237–1250 (2015). https://doi.org/10.1007/s00425-015-2380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2380-7

Keywords

Navigation