Skip to main content
Log in

Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

By genome-wide association study, QTLs for salt tolerance in rapeseed were detected, and a TSN1 ortholog was identified as a candidate gene responsible for genetic variation in cultivars.

Dissecting the genomic regions governing abiotic stress tolerance is necessary for marker-assisted breeding to produce elite breeding lines. In this study, a world-wide collection of rapeseed was evaluated for salt tolerance. These rapeseed accessions showed a large variation for salt tolerance index ranging from 0.311 to 0.999. Although no significant correlation between salt tolerance and Na+ content was observed, there was a significant negative correlation between shoot biomass production under a control condition and salt tolerance. These rapeseed accessions were genotyped by DArTseq for a total of 51,109 genetic markers, which were aligned with ‘pseudomolecules’ representative of the genome of rapeseed to locate their hypothetical order for association mapping. A total of 62 QTLs for salt tolerance, shoot biomass, and ion-homeostasis-related traits were identified by association mapping using both the P and Q+K models. Candidate genes located within the QTL regions were also shortlisted. Sequence analysis showed many polymorphisms for BnaaTSN1. Three of them in the coding region resulting in a premature stop codon or frameshift were found in most of the sensitive lines. Loss-of-function mutations showed a significant association with salt tolerance in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, McNeilly T (1990) Responses of four Brassica species to sodium chloride. Environ Exp Bot 30:475–487

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    CAS  Google Scholar 

  • Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ, Koornneef M, Alcázar R (2013) Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci 110:15818–15823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker S, Zhu GSJK (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bose J, Xie Y, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64:471–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146:1707–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Chuencharoen S, Mongkolsiriwatana C, Ashraf M, Kirdmanee C (2012) Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tissue Organ Cult 110:23–33

    Article  CAS  Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Dingkuhn M (2013) Genome-wide association mapping of root traits in a Japonica rice panel. PLoS One. doi:10.1371/journal.pone.0078037

    Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105:1221–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • dit Frey NF, Muller P, Jammes F, Kizis D, Leung J, Perrot-Rechenmann C, Bianchi MW (2010) The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. Plant Cell 22:1575–1591

    Article  PubMed Central  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210:99–404

    Google Scholar 

  • Evanno G, Regnaut S, Goudet K (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Uma K, Berkowitz GA (1998) Molecular cloning and expression characterization of a rice K+ channel β subunit. Plant Mol Biol 37:597–606

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald J, Grenon M, Lowndes N (2009) 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans 37:897

    Article  CAS  PubMed  Google Scholar 

  • Forster B (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317–328

    Article  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci 98:11444–11449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30:798–802

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci 93:8782–8786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant, Cell Environ 33:793–804

    CAS  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  Google Scholar 

  • Katori T, Ikeda A, Iuchi S, Kobayashi M, Shinozaki K, Maehashi K, Sakata Y, Tanaka S, Taji T (2010) Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions. J Exp Bot 61:1125–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169–173

    Article  CAS  Google Scholar 

  • Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci 103:18008–18013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lippuner V, Cyert MS, Gasser CS (1996) Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271:12859–12866

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Yang J, Li R, Shi L, Zhang C, Long Y, Xu F, Meng J (2009) Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 320:255–266

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RG, van der Linden CG (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 126:2335–2351

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157:1942–1955

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nasu S, Kitashiba H, Nishio T (2012) “Na-no-hana Project” for recovery from the tsunami disaster by producing salinity-tolerant oilseed rape lines: selection of salinity-tolerant lines of Brassica crops. J Integ Field Sci 9:33–37

    Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet. doi:10.1371/journal.pgen.0020190

    Google Scholar 

  • Pokrovskii VB (1990) Promising forms of winter swede rape. Selektsiya i Semenovodstvo Moskva 4:24–25

    Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK (2010) RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci 107:5669–5674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2012) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  Google Scholar 

  • Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genetics 2, Article ID e210

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shuuichi N, Takano T (2003) Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54:2231–2237

    Article  Google Scholar 

  • Tang J, Yu X, Luo N, Xiao F, Camberato JJ, Jiang Y (2013) Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions. Plant Cell Environ 36:2021–2033

    CAS  PubMed  Google Scholar 

  • Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol. doi:10.1186/1471-2229-3-2

    PubMed Central  PubMed  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, He L, Li HD, Xu J, Wu WH (2010) Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res 20:826–837

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lu Y, Espejo A, Wu J, Xu W, Bedford MT (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Zhao J, Cheng NH, Motes CM, Blancaflor EB, Moore M, Gonzales N, Padmanaban S, Sze H, Ward JM, Hirchi KD (2008) AtCHX13 is a plasma membrane K+ transporter. Plant Physiol 148:796–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu GY, Kinet JM, Lutts S (2001) Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I Physiological behaviour during vegetative growth. Euphytica 121:251–263

    Article  Google Scholar 

  • Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE Jr, Adams MW, Zhu Y, Shi H, Yun DJ, Hasegawa PM, Bressan RA (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27:5214–5224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tadashi Takahashi for his guidance about measurement of ion contents. This work was supported in part by the Japan–China Joint Research Program of the Japan Science and Technology Agency (J120000331) and the Rapeseed Project for Restoring Tsunami-Salt-Damaged Farmland. Hui-Yee Yong is a recipient of a Japanese government (Monbukagakusho: MEXT) scholarship from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Construction of the genome pseudomolecules was supported by UK Department for Environment, Food and Rural Affairs (Defra IF0144).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nishio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2015_2310_MOESM1_ESM.pptx

Supplementary Fig. S1 Population structure of B. napus accessions. (a) Estimated L(K) of possible clusters k from 1 to 10; (b) Δk based on the rate of change of L(K) between successive k; (c) Bar plot population structure based on k=2; blue color represents Group 1, red color represents Group 2 (PPTX 73 kb)

425_2015_2310_MOESM2_ESM.png

Supplementary Fig. S2 Quantile–quantile plots for all eight traits for six models: naïve (a), Q (b), P (c), K (d), Q+K (e), P+K (f) (PNG 131 kb)

425_2015_2310_MOESM3_ESM.pdf

Supplementary Fig. S3 Manhattan plots of association analysis using the P model and Q + K model for shoot fresh weight of control plants (a), shoot fresh weight of salt-treated plants (b), shoot dry weight of control plants (c), shoot dry weight of salt-treated plants (d), leaf K+ content of control plants (e), leaf K+ content of salt-treated plants (f), leaf Ca2+ content of control plants (g), leaf Ca2+ content of salt-treated plants (h), leaf Na+ content of salt-treated plants (i), leaf ratio of Na+:K+ of salt-treated plants (j) and leaf ratio of Na+:Ca2+ of salt-treated plants (k). Candidate genes previously shown to be associated with traits near peak SNPs are shown along the top. The horizontal red line represents the significance threshold −log10(p) = 4. The x-axis represents chromosome (PDF 1370 kb)

Supplementary Fig. S4 Expression fold change of BnaaTSN1 genes in response to salt stress (PDF 254 kb)

Supplementary Table S1. Detail of B. napus accessions (XLSX 13 kb)

Supplementary Table S2. Tag sequences of DArT markers (Sheet 1) and SNP markers (Sheet 2) (2157 21 kb)

Supplementary Table S3. Unigene-based map of the B. napus A genome (XLSX 5363 kb)

Supplementary Table S4. Unigene-based map of the B. napus A genome (XLSX 6193 kb)

Supplementary Table S5. Primer sequences for qRT-PCR analysis (XLSX 11 kb)

425_2015_2310_MOESM10_ESM.xlsx

Supplementary Table S6. F test following analysis of variance for shoot FW, DW, leaf K+ and leaf Ca2+ content under control and salt stress (XLSX 11 kb)

425_2015_2310_MOESM11_ESM.xlsx

Supplementary Table S7. F test following analysis of variance for leaf Na+, Na+:K+ and Na+:Ca2+ under salt stress (XLSX 11 kb)

Supplementary Table S8 Phenotype scoring of B. napus accessions (XLSX 29 kb)

Supplementary Table S9. Kinship matrix of 85 B. napus accessions (XLSX 52 kb)

425_2015_2310_MOESM14_ESM.xlsx

Supplementary Table S10. Significant marker associations (p < 1.0x10−4) with the mean of biomass and ion accumulation traits (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, HY., Wang, C., Bancroft, I. et al. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta 242, 313–326 (2015). https://doi.org/10.1007/s00425-015-2310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2310-8

Keywords

Navigation