Skip to main content
Log in

A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability.

Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean. Furthermore, the transgenic seeds contained decreased oil content and the germination ability was severely affected. Interestingly, HFA accumulation was significantly increased in camelina seed when co-expressing RcFAH with a fatty acid condensing enzyme, LfKCS3, from Physaria fendleri, a native HFA accumulator relative to camelina. The oil content and seed germination of the transgenic seeds also appeared normal compared to non-transgenics. LfKCS3 has been previously characterized to specifically elongate the hydroxylated ricinoleic acid to lesquerolic acid, the 20-carbon HFA found in lesquerella oil. The elongation reaction may facilitate the HFA flux from phosphatidylcholine (PC), the site of HFA formation, into the acyl-CoA pool for more efficient utilization in triacylglycerol (TAG) biosynthesis. This was demonstrated by increased HFA accumulation in TAG concurrent with reduced HFA content in PC during camelina seed development, and increased C20-HFA in HFA-TAG molecules. These effects of LfKCS3 thus may effectively relieve the bottleneck for HFA utilization in TAG biosynthesis and the feedback inhibition to fatty acid synthesis, result in higher HFA accumulation and restore oil content and seed viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

FAE1:

Fatty acid elongation 1

FAMEs:

Fatty acid methyl esters

GC–MS:

Gas chromatography–mass spectrometry

HFA:

Hydroxy fatty acid

LfKCS3:

Lesquerella (Physaria) fendleri fatty acid condensing enzyme

MAG:

Monoacylglycerol

ODP:

Oleate derivative proportion

PC:

Phosphatidylcholine

RcFAH:

Ricinus communis fatty acid hydroxylase

TAG:

Triacylglycerol

VLCFA:

Very-long-chain fatty acid (C20 and longer)

X:Y:

A fatty acid containing X carbons with Y double bonds

References

  • Andre C, Haslam RP, Shanklin J (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci USA 109:10107–10112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor bean (Ricinus communis) endosperm. Biochem J 280:507–514

    CAS  PubMed Central  PubMed  Google Scholar 

  •  Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J 68:387–399

    Article  CAS  PubMed  Google Scholar 

  • Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and head group exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol 160:1530–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates PD, Johnson SR, Cao X, Li J, Nam JW, Jaworski JG, Ohlrogge JB, Browse J (2014) Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci USA 111:1204–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blight EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210

    Article  CAS  PubMed  Google Scholar 

  • Browse J, McCourt PJ, Somerville C (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145

    Article  CAS  PubMed  Google Scholar 

  • Browse J, McConn M, James D Jr, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    CAS  PubMed  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA 96:12935–12940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochem 67:1166–1176

    Article  CAS  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 37:231–240

    Article  CAS  PubMed  Google Scholar 

  • Cermak SC, Brandon KB, Isbell TA (2006) Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind Crop Prod 23:54–64

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins-Silva JE, Lu C, Cahoon EB (2011) Camelina: a designer biotech oilseed crop. INFORM, pp 610–613

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dauk M, Lam P, Kunst L, Smith M (2007) A FAD2 homologue from Lesquerella lindheimeri has predominantly fatty acid hydroxylase activity. Plant Sci 173:43–49

    Article  CAS  Google Scholar 

  • Dierig DA, Wang G, McCloskey WB, Thorp KR, Isbell TA, Ray DT, Foster MA (2011) Lesquerella: new crop development and commercialization in the US. Ind Crop Prod 34:1381–1385

    Article  Google Scholar 

  • Gehringer A, Friedt W, Luhs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp sativa). Genome 49:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Hayes DG, Kleiman R, Phillips BS (1995) The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J Am Oil Chem Soc 72:559–569

    Article  CAS  Google Scholar 

  • Hu Z, Ren Z, Lu C (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol 158:1944–1954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutcheon C, Ditt R, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker C, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233

    PubMed Central  PubMed  Google Scholar 

  • Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6:178–184

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunst L, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem 30:425–434

    CAS  Google Scholar 

  • Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson PO, Sjodahl S, Green A, Stymne S (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259

    Article  CAS  PubMed  Google Scholar 

  • Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Plant Physiol 134:432–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxy fatty acids. Plant Physiol 127:1635–1643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope? Lipid Technol 22:270–273

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: vital industrial raw material. Biores Technol 97:1086–1091

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rodriguez MF, Sanchez-Garcia A, Salas JJ, Garces R, Martinez-Force E (2013) Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crop Prod 50:673–679

    Article  CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular-organization of glycerolipid metabolism. Ann Rev Plant Physiol Plant Mol Biol 33:97–132

    CAS  Google Scholar 

  • Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD (1985) Developmentally regulated expression of the ß-phaseolin gene in tobacco seed. Proc Natl Acad Sci USA 82:3320–3324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Candido MJD, Chen G, Crosby W, Tan D, He XH, Lakshmamma P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of castor. Agr J 104:853–880

    Article  Google Scholar 

  • Shonnard D, Williams L, Kalnes T (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Env Prog Sustain Ener 29:382–392

    CAS  Google Scholar 

  • Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    Article  CAS  PubMed  Google Scholar 

  • Snapp A, Lu C (2013) Engineering industrial fatty acids in oilseeds. Front Biol 8:323–332

    Article  CAS  Google Scholar 

  • Sperling P, Linscheid M, Stocker S, Muhlbach HP, Heinz E (1993) In vivo desaturation of cis-delta 9-monounsaturated to cis-delta 9,12-diunsaturated alkenylether glycerolipids. J Biol Chem 268:26935–26940

    CAS  PubMed  Google Scholar 

  • Suh MC, Schultz DJ, Ohlrogge JB (2002) What limits production of unusual monoenoic fatty acids in transgenic plants? Planta 215:584–595

    Article  CAS  PubMed  Google Scholar 

  • van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92:6743–6747

    Article  PubMed Central  PubMed  Google Scholar 

  • van Erp H, Bates PD, Shockey J, Burgal J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155:683–693

    Article  PubMed Central  PubMed  Google Scholar 

  • Vollmann JMT, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26:270–277

    Article  CAS  Google Scholar 

  • Weselake RJ (2005) Storage Lipids. In: Murphy DJ (ed) Plant lipids, biology, utilization and manipulation. Blackwell Publishing, Hoboken, pp 162–225

    Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ljerka Kunst (University of British Columbia) for kindly providing the lesquerella LfKCS3 gene construct MHS15. This work was supported by grants from U.S. Department of Agriculture and the Plant Genome Research Program of the U.S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snapp, A.R., Kang, J., Qi, X. et al. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa . Planta 240, 599–610 (2014). https://doi.org/10.1007/s00425-014-2122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2122-2

Keywords

Navigation