Skip to main content
Log in

AhDMT1, a Fe2+ transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe2+ transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BPDS:

Bathophenanthrolinedisulfonic acid

DMT:

Divalent metal ion transporter genes

hiTAIL-PCR:

High-efficiency thermal asymmetric interlaced PCR

IP:

Intercropping peanut

IRT:

Iron-regulated transporter genes

MP:

Monocropping peanut

NAS:

Nicotianamin synthase genes

NRAMP:

Natural resistance-associated macrophage protein

PBM:

Peribacteroid membrane

PLACE:

Plant cis-acting regulatory DNA elements

SNF:

Symbiotic N2 fixation

TM:

Transmembrane domains

YSL:

Yellow stripe-like genes

References

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    Article  PubMed  CAS  Google Scholar 

  • Bond JE, Gresshoff PM (1993) Soybean transformation to study molecular physiology. In: Gresshoff PM (ed) Plant responses to the environment. CRC Press, London, pp 25–44

    Google Scholar 

  • Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci 4:359

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng FX, Cao GQ, Wang XR, Zhao J, Yan XL (2008) Isolation of the rhizobium strains with high nodule percentage from the low phosphorus acidic soil in South China. Chin Sci Bull 53:2903–2910

    Google Scholar 

  • Curie C, Alonso JM, Jean MLE, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dakora DF (1995) A functional relationship between leghaemogbin and nitrogenase based on novel measurements of the proteins in legume root nodules. Ann Bot 15:49–54

    Article  Google Scholar 

  • Dix D, Bridgham J, Broderius M, Eide D (1997) Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem 272:11770–11777

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by the Liac/SS CARRIER DNA/PEG method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogl S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304

    Article  PubMed  CAS  Google Scholar 

  • Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN et al (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA 104:19150–19155

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Itai RN, Ogo Y et al (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961

    Article  PubMed  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu YG, Chen YL (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang LL, Wang ET, Li Y, Chen WX (2006) Phylogenetic diversity of rhizobia isolated from the root nodules of peanut (Arachis hypogaea) grown in Hebei. Zhong guo Nong Ye Ke Xue 39:344–352

    Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nambiar PTC, Dart PJ (1983) Factors influencing nitrogenase activity (Acetylene Reduction) by root nodules of groundnut, Arachis hypogaea L. Hua Sheng Xue Bao 10:26–29

    CAS  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN et al (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  PubMed  CAS  Google Scholar 

  • Piertney SB, Webster LMI (2010) Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach. Genetica 138:419–432

    Article  PubMed  CAS  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    PubMed  CAS  Google Scholar 

  • Rodríguez-Haas B, Finney L, Vogt S, González-Melendi P, Imperial J, Gonzalez-Guerrero M (2013) Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics 5:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the Barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tajima R, Lee ON, Abe J, Lux A, Morita S (2007) Nitrogen-fixing activity of root nodules in relation to their size in peanut (Arachis hypogaea L.). Plant Prod Sci 10:423–429

    Article  Google Scholar 

  • Takkar PN, Kaur NP (1984) HCl method for Fe2+ estimation to resolve iron chlorosis in plants. J Plant Nutr 7:81–90

    Article  CAS  Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1990) The role of iron nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytol 114:173–182

    Article  CAS  Google Scholar 

  • Terry RE, Soerensen KU, Jolley VD, Brown JC (1991) The role of active Bradyrhizobium japonicum in iron stress response of soybeans. Plant Soil 130:225–230

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong HC, Kobayashi T, Kakei Y, Senoura T, Nakazono M, Takahashi H, Nakanishi H, Shen HY, Duan PG, Guo XT, Nishizawa NK, Zuo YM (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J Exp Bot 63:4437–4446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong HC, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen HY, Zhang FS, Nishizawa NK, Zuo YM (2013) Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell Environ. doi:10.1111/pce.12097

    PubMed  Google Scholar 

  • Zuo YM, Zhang FS (2009) Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. Agron Sustain Dev 29:63–71

    Article  CAS  Google Scholar 

  • Zuo YM, Zhang FS, Li XL, Cao YP (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220:13–25

    Article  CAS  Google Scholar 

  • Zuo YM, Liu YX, Zhang FS, Peter C (2004) Studies on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Sci Plant Nutr 50:1071–1078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jiping Liu (USDA-ARS, Cornell University), Dr. Takanori Kobayashi (Graduate School of Agricultural and Life Sciences, The University of Tokyo) for reading and comments of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 31272223, 31071840) and the innovative group of NSFC (Grant No. 31121062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanmei Zuo.

Additional information

H. Shen and H. Xiong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

Additional supporting information can be found in the online version of this article:

Suppl. Fig. S1 Sequence analysis of nucleotide and deduced amino acid sequence of AhDmt1 (TIFF 6642 kb)

Suppl. Fig. S2 Analysis of promoter sequence of AhDmt1 and DNA structure of GmDmt1 (TIFF 1758 kb)

Suppl. Fig. S3 Functional analysis of AhDmt1 in yeast strains with expression vector pDR195 (TIFF 2122 kb)

425_2014_2033_MOESM4_ESM.tif

Suppl. Fig. S4 Subcellular localization of GFP (a–c) and AhDmt1-GFP fusion (d–f) proteins in onion epidermal cells with the expression vector pEZS-NL (TIFF 632 kb)

425_2014_2033_MOESM5_ESM.tif

Suppl. Fig. S5 Semi-quantitative RT-PCR analysis of mRNA abundance of AhDmt1 in peanut plant tissues in response to iron deficiency under the control of housekeeping gene 18S and 25S ribosomal RNA, respectively (TIFF 36 kb)

425_2014_2033_MOESM6_ESM.tif

Suppl. Fig. S6 The active iron concentration in peanut primary and mature nodules under the different iron nutrition conditions (TIFF 92 kb)

Supplementary material 7 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Xiong, H., Guo, X. et al. AhDMT1, a Fe2+ transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils. Planta 239, 1065–1077 (2014). https://doi.org/10.1007/s00425-014-2033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2033-2

Keywords

Navigation