Skip to main content
Log in

Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Aspartic proteinase

PSI:

Plant specific insert

CDR1:

Constitutive disease resistance 1

EST:

Expressed sequence tag

EDANS:

5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid

DABCYL:

4-(Dimethylaminoazo)benzene-4-carboxylic acid

E-64:

l-trans-Epoxysuccinylleucylamide-(4-guanidino)butane

IPTG:

Isopropyl β-d-1-hiogalactopyranoside

MCA:

(7-Methoxycoumarin-4-yl)acetyl

DNP:

2,4-dinitrophenyl

rchlapsin:

Recombinant chlapsin

References

  • Asakura T, Watanabe H, Abe K, Arai S (1995) Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem 232:77–83

    Article  PubMed  CAS  Google Scholar 

  • Balsera M, Soll J, Buchanan BB (2010) Redox extends its regulatory reach to chloroplast protein import. Trends Plant Sci 15:515–521

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  PubMed  CAS  Google Scholar 

  • Bleukx W, Delcour JA (1999) A second aspartic proteinase associated with wheat gluten. J Cereal Sci 32:31–42

    Article  Google Scholar 

  • Castanheira P, Samyn B, Sergeant K, Clemente JC, Dunn BM, Pires E, Van Beeumen J, Faro C (2005) Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J Biol Chem 280:13047–13054

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Pfeil JE, Gal S (2002) The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem 269:4675–4684

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ouyang Y, Wang L, Xie W, Zhang Q (2009) Aspartic proteases gene family in rice: Gene structure and expression, predicted protein features and phylogenetic relation. Gene 442:108–118

    Article  PubMed  CAS  Google Scholar 

  • Consortium TU (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219

    Article  Google Scholar 

  • da Costa DS, Pereira S, Moore I, Pissarra J (2010) Dissecting cardosin B trafficking pathways in heterologous systems. Planta 232:1517–1530

    Article  PubMed  Google Scholar 

  • Davies D (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215

    Article  PubMed  CAS  Google Scholar 

  • D’Hondt K (1993) An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro. J Biol Chem 268:20884–20891

    PubMed  Google Scholar 

  • Duarte P, Pissarra J, Moore I (2008) Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. Planta 227:1255–1268

    Article  PubMed  CAS  Google Scholar 

  • Dunn B (1997) Splitting image. Nat Struct Mol Biol 4:969–972

    Article  CAS  Google Scholar 

  • Dunn BM (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 102:4431–4458

    Article  PubMed  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  PubMed  CAS  Google Scholar 

  • Egas C, Lavoura N, Resende R, Brito RMM, Pires E, de Lima MCP, Faro C (2000) The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. J Biol Chem 275:38190–38196

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Faro C, Gal S (2005) Aspartic proteinase content of the Arabidopsis genome. Curr Protein Pept Sci 6:493–500

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  • Francis SE, Gluzman Y, Oksman A, Knickerbocker A, Mueller R, Bryant ML, Sherman DR, Russell DG, Goldberg DE (1994) Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 1:306–317

    Google Scholar 

  • Glathe S, Kervinen J, Nimtz M, Li GH, Tobin GJ, Copeland TD, Ashford DA, Wlodawer A, Costa J (1998) Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). J Biol Chem 273:31230–31236

    Article  PubMed  CAS  Google Scholar 

  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132–137

    Article  PubMed  CAS  Google Scholar 

  • Guruprasad K, Törmäkangas K, Kervinen J, Blundell TL (1994) Comparative modelling of barley-grain aspartic proteinase: A structural rationale for observed hydrolytic specificity. FEBS Lett 352:131–136

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook, 2nd edn. Elsevier-Academic Press, Oxford

    Google Scholar 

  • Horimoto Y, Dee DR, Yada RY (2009) Multifunctional aspartic peptidase prosegments. N Biotechnol 25:318–324

    Article  PubMed  CAS  Google Scholar 

  • Hortensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10:136

    Article  PubMed  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Yamamoto Y, Murakami S, Sato F (2005) Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta 222:643–651

    Article  PubMed  CAS  Google Scholar 

  • Kervinen J, Sarkkinen P, Kalkkinen N, Mikola L, Saarma M (1993) Hydrolytic specificity of the barley grain aspartic proteinase. Phytochemistry 32:799–803

    Article  PubMed  CAS  Google Scholar 

  • Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955

    Article  PubMed  CAS  Google Scholar 

  • Koelsch G, Mares M, Metcalf P, Fusek M (1994) Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett 343:6–10

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA 102:6225–6230

    Article  PubMed  CAS  Google Scholar 

  • Liepinsh E, Andersson M, Ruysschaert JM, Otting G (1997) Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Mol Biol 4:793–795

    Article  CAS  Google Scholar 

  • Lin X, Tang J, Koelsch G, Monod M, Foundling S (1993) Recombinant canditropsin, an extracellular aspartic protease from yeast Candida tropicalis. Escherichia coli expression, purification, zymogen activation, and enzymic properties. J Biol Chem 268:20143–20147

    PubMed  CAS  Google Scholar 

  • Malyan AN (2010) Nucleotide binding to noncatalytic sites is essential for ATP-dependent stimulation and ADP-dependent inactivation of the chloroplast ATP synthase. Photosynth Res 105:243–248

    Article  PubMed  CAS  Google Scholar 

  • Mazorra-Manzano MA, Tanaka T, Dee DR, Yada RY (2010) Structure-function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry 71:515–523

    Article  PubMed  CAS  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    Article  PubMed  CAS  Google Scholar 

  • Mourioux G, Douce R (1981) Slow passive diffusion of orthophosphate between intact isolated chloroplasts and suspending medium. Plant Physiol 67:470–473

    Article  PubMed  CAS  Google Scholar 

  • Olinares PD, Kim J, van Wijk KJ (2011) The Clp protease system; a central component of the chloroplast protease network. Biochim Biophys Acta 1807:999–1011

    Article  PubMed  CAS  Google Scholar 

  • Pereira CS, da Costa DS, Pereira S, Nogueira FM, Albuquerque PM, Teixeira J, Faro C, Pissarra J (2008) Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma 232:203–213

    Article  PubMed  CAS  Google Scholar 

  • Pissarra J, Pereira C, Costa DS, Figueiredo R, Duarte P, Teixeira J, Pereira S (2007) From flower to seed germination in Cynara cardunculus: a role for aspartic proteinases. Int J Plant Develop Biol 1:274–281

    Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  PubMed  CAS  Google Scholar 

  • Radhamony RN, Theg SM (2006) Evidence for an ER to Golgi to chloroplast protein transport pathway. Trends Cell Biol 16:385–387

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Verissimo P, Cortes L, Samyn B, Van Beeumen J, Pires E, Faro C (1998) Identification and proteolytic processing of procardosin A. Eur J Biochem 255:133–138

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Bateman AJ (2009) Pepsin homologues in bacteria. BMC Genomics 10:437

    Article  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    Article  PubMed  CAS  Google Scholar 

  • Runeberg-Roos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S (1994) The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol 105:321–329

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  PubMed  CAS  Google Scholar 

  • Schaaf A, Reski R, Decker EL (2004) A novel aspartic proteinase is targeted to the secretory pathway and to the vacuole in the moss Physcomitrella patens. Eur J Cell Biol 83:145–152

    Article  PubMed  CAS  Google Scholar 

  • Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166

    Article  PubMed  CAS  Google Scholar 

  • Simoes I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Simoes I, Faro R, Bur D, Faro C (2007) Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J Biol Chem 282:31358–31365

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    Article  PubMed  CAS  Google Scholar 

  • Terauchi K, Asakura T, Ueda H, Tamura T, Tamura K, Matsumoto I, Misaka T, Hara-Nishimura I, Abe K (2006) Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. J Plant Physiol 163:856–862

    Article  PubMed  CAS  Google Scholar 

  • Timotijevic GS, Milisavljevic MD, Radovic SR, Konstantinovic MM, Maksimovic VR (2010) Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. J Plant Physiol 167:61–68

    Article  PubMed  CAS  Google Scholar 

  • Tormakangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13:2021–2032

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  • Veríssimo P, Faro C, Pires C (1995) The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsin-like specificities. Biotechnol Lett 17:621–626

    Article  Google Scholar 

  • Veríssimo P, Faro C, Moir AJ, Lin Y, Tang J, Pires E (1996) Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem 235:762–768

    Article  PubMed  Google Scholar 

  • Vieira M, Pissarra J, Veríssimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539

    Article  PubMed  CAS  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  Google Scholar 

  • Wilson NF, Iyer JK, Buchheim JA, Meek W (2008) Regulation of flagellar length in Chlamydomonas. Semin Cell Dev Biol 19:494–501

    Article  PubMed  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Lucas S, Mayer KF, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Faro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, C.M., Pereira, C., da Costa, D.S. et al. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii . Planta 236, 283–296 (2012). https://doi.org/10.1007/s00425-012-1605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1605-2

Keywords

Navigation