Skip to main content
Log in

Isolation and characterization of a novel peroxisomal choline monooxygenase in barley

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BADH:

Betaine aldehyde dehydrogenase

CMO:

Choline monooxygenase

ER:

Endoplasmic reticulum

GB:

Glycine betaine

GFP:

Green fluorescent protein

mRFP:

Monomeric red fluorescent protein

PEG:

Polyethylene glycol

References

  • Arakawa K, Takabe T, Sugiyama T, Akazawa T (1987) Purification of betaine-aldehyde dehydrogenase from spinach leaves and preparation of its antibody. J Biochem 101:1485–1488

    PubMed  CAS  Google Scholar 

  • Blunden G, Smith BE, Irons MW, Yang MH, Roch OG, Patel AV (1992) Betaines and tertiary sulfonium compounds from 62 species of marine-algae. Biochem Syst Ecol 20:373–388

    Article  CAS  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    Article  PubMed  CAS  Google Scholar 

  • Burnet M, Lafontaine PJ, Hanson AD (1995) Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol 108:581–588

    PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Mitsuya S, Miyake H, Hattori T, Takabe T (2010) Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. Planta 232:133–143

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Nelsen CE (1978) Betaine accumulation and [14C]formate metabolism in water-stressed barley leaves. Plant Physiol 62:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Mitsuya S, Fujiwara T, Jagendorf AT, Takabe T (2009) Tissue specificity of glycinebetaine synthesis in barley. Plant Sci 176:112–118

    Article  CAS  Google Scholar 

  • Hibino T, Meng Y-L, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363

    Article  PubMed  CAS  Google Scholar 

  • Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277:41352–41360

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107–114

    Article  CAS  Google Scholar 

  • Kobayashi H, Yamada M, Taniguchi M, Kawasaki M, Sugiyama T, Miyake H (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system. Plant Cell Physiol 50:129–140

    Article  PubMed  CAS  Google Scholar 

  • Ladyman JAR, Hitz WD, Hanson AD (1980) Translocation and metabolism of glycine betaine by barley plants in relation to water stress. Planta 150:191–196

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lilley RM, Fitzgerald M, Rienits G, Walker D (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol 75:1–10

    Article  CAS  Google Scholar 

  • McGookin R (1984) RNA extraction by the guanidine thiocyanate procedure. In: Walker JM, Clifton NJ (eds) Methods in molecular biology, vol 2. Humana Press, New Jersey, pp 113–116

  • Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T (2009) OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett 583:3625–3629

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Nomura M, Mori H, Jangendorf AT, Ueda A, Takabe T (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol 42:1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Graham D, Akazawa T (1976) Isolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts. Plant Physiol 58:309–314

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T (1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol 107:703–708

    PubMed  CAS  Google Scholar 

  • Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T (1998) Transgenically produced glycinebetaine protects ribulose 1, 5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol 39:425–432

    CAS  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141:758–765

    Article  PubMed  CAS  Google Scholar 

  • Park E-J, Jeknic Z, Pino M-T, Murata N, Chen TH-H (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao P-C, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron–sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA 94:3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Maier E, Benz R, Heldt HW (1995) The membrane of leaf peroxisomes contains a porin-like channel. J Biol Chem 270:17559–17565

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859–865

    Article  PubMed  CAS  Google Scholar 

  • Shen Y-G, Du B-X, Zhang W-K, Zhang J-S, Chen S-Y (2002) AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  PubMed  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (2005) KATAMARI1/MURUS3 is a novel Golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17:1764–1776

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Sugiyama T (1990) Aspartate aminotransferase from Eleusine coracana, a C4 plant: purification, characterization, and preparation of antibody. Arch Biochem Biophys 282:427–432

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218

    Article  PubMed  CAS  Google Scholar 

  • Visser WF, Van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA (2007) Metabolite transport across the peroxisomal membrane. Biochem J 401:365–375

    Article  PubMed  CAS  Google Scholar 

  • Weigel P, Lerma C, Hanson AD (1988) Choline oxidation by intact spinach chloroplasts. Plant Physiol 86:54–60

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum—molecular cloning and expression of two related genes. Plant Physiol 110:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi J, Nishimura M, Akazawa T (1986) Purification and characterization of heme-containing low-activity form of catalase from greening pumpkin cotyledons. Eur J Biochem 159:315–322

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hitoshi Mori (Nagoya University, Japan) for advice on subcellular fractionation, Miss Nicola S. Skoulding (University of Leeds, UK) for critical reading of the manuscript, Dr. Masayoshi Maeshima (Nagoya University, Japan), Dr. Mikio Nishimura (National Institute for Basic Biology, Japan), Dr. Mitsutaka Taniguchi (Nagoya University, Japan) and Dr. Teruhiro Takabe (Meijo University, Japan) for providing yeast strain BJ5458 and the antibodies anti-pumpkin catalase, anti-Eleusine coracana aspartate aminotransferase and anti-spinach CMO, respectively, and Mr. Yasuki Tahara of Nagoya University Farm for harvesting the barley seeds used in this investigation. This work was supported by a Grant-in-Aid for scientific research (No. 20380177 and No. 18880013) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T.T. and S.M., respectively) and The Salt Science Research Foundation (to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Mitsuya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Supplementary material 2 (DOC 8564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsuya, S., Kuwahara, J., Ozaki, K. et al. Isolation and characterization of a novel peroxisomal choline monooxygenase in barley. Planta 234, 1215–1226 (2011). https://doi.org/10.1007/s00425-011-1478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1478-9

Keywords

Navigation