Skip to main content
Log in

A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA) and by the stress resulting from the elicitor flagellin, NaCl, and osmosis. The recombinant AtChiC protein was produced in E. coli, purified, and characterized with respect to the structure and function. The recombinant AtChiC hydrolyzed N-acetylglucosamine oligomers producing dimers from the non-reducing end of the substrates. The crystal structure of AtChiC was determined by the molecular replacement method at 2.0 Å resolution. AtChiC was found to adopt an (β/α)8 fold with a small insertion domain composed of an α-helix and a five-stranded β-sheet. From docking simulation of AtChiC with pentameric substrate, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common to class V chitinases from higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AtChiC:

Class V chitinase from Arabidopsis thaliana

NtChiV:

Class V chitinase from Nicotiana tabacum

SmChiB:

Family GH-18 chitinase B from Serratia marcescens

GlcNAc:

2-Acetamido-2-deoxy-d-glucopyranose

(GlcNAc) n :

β-1,4-Linked oligosaccharide of GlcNAc with a polymerization degree of n

PCR:

Polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

HPLC:

High performance liquid chromatography

MALDI-TOF-MS:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

ABA:

Abscisic acid

JA:

Jasmonic acid

GA:

Gibberellic acid

RMS:

Root mean square

EST:

Expression sequence tag

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Broekaert WF, Lambrechts D, Verbelen J-P, Peumans WJ (1988) Comparison of some molecular, enzymatic, and antifungal properties of chitinases from thorn-apple, tobacco, and wheat. Plant Physiol 86:569–574

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D54:905–921

    CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    Article  PubMed  Google Scholar 

  • Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J 371:97–108

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19:341–348

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graphic 14:33–38

    Article  CAS  Google Scholar 

  • Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156

    CAS  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A47:110–119

    CAS  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  PubMed  CAS  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379

    PubMed  CAS  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Vårum KM, Fukamizo T (2011) Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum. Plant Mol Biol 75:291–304

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Passarinho PA, de Vries AC (2002) Arabidopsis chitinases: a genomic survey. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, pp 1–25

  • Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Schuettelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr A D60:1355–1363

    CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  • Synstad B, Gåseidnes S, Van Aalten DM, Vriend G, Nielsen JE, Eijsink VG (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur J Biochem 271:253–262

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Ohdomari A, Nakama N, Shimoji M, Ishihara M (2005a) Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci Biotechnol Biochem 69:811–818

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Toma N, Ishihara M (2005b) Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf. Biosci Biotechnol Biochem 69:189–196

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T (2009) A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 19:1452–1461

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Fujiwara M, Dennhart N, Hayashi H, Onaga S, Ohnuma T, Letzel T, Sakuda S, Fukamizo T (2010) Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS. Biochim Biophys Acta 1804:668–675

    PubMed  CAS  Google Scholar 

  • Tateishi Y, Umemura Y, Esaka M (2001) A basic class I chitinase expression in winged bean is up-regulated by osmotic stress. Biosci Biotechnol Biochem 65:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW (1994) Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure 2:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Vaaje-Kolstad G, Houston DR, Rao FV, Peter MG, Synstad B, van Aalten DM, Eijsink VG (2004) Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim Biophys Acta 1696:103–111

    PubMed  CAS  Google Scholar 

  • Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D60:2184–2195

    CAS  Google Scholar 

  • van Aalten DMF, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VGH (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98:8979–8984

    Article  PubMed  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins 52:609–623

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Imoto T (1981) A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydr Res 92:160–162

    Article  PubMed  CAS  Google Scholar 

  • Yeh S, Moffatt BA, Griffith M, Xiong F, Yang DS, Wiseman SB, Sarhan F, Danyluk J, Xue YQ, Hew CL, Doherty-Kirby A, Lajoie G (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, D’Urzo MP, Abad L, Takeda S, Salzman R, Chen Z, Lee H, Hasegawa PM, Bressan RA (1996) Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Plant Physiol 111:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant to O.L. from the North Ostrobothnia Regional Fund of the Finnish Cultural Foundation. The authors thank the beam-line staffs at BL-17A of KEK (Ibaraki, Japan) for technical assistance during data collection, and Hideko Inanaga of AIST for technical assistance on protein crystallography.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomoyuki Numata or Tamo Fukamizo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnuma, T., Numata, T., Osawa, T. et al. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234, 123–137 (2011). https://doi.org/10.1007/s00425-011-1390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1390-3

Keywords

Navigation