Skip to main content
Log in

Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Xylem differentiation in plants is under strict hormonal regulation. Auxins and cytokinins, together with brassinosteroids (BRs), appear to be the main hormones controlling vascular differentiation. In this report, we study the effect of these hormones on the basic peroxidase isoenzyme from Zinnia elegans (ZePrx), an enzyme involved in lignin biosynthesis. Results showed that auxins and cytokinins induce ZePrx, similarly to the way in which they induce seedling secondary growth (in particular, metaxylem differentiation). Likewise, the exogenous application of BR reduces the levels of ZePrx, in a similar way to their capacity to inhibit seedling secondary growth. Consistent with this notion, the exogenous application of BR reverses the auxin/cytokinin-induced ZePrx expression, but has no effect on the auxin/cytokinin-induced secondary growth. This differential hormonal response is supported by the analysis of the ZePrx promoter, which contains (a) cis-elements directly responsive to these hormones and (b) cis-elements targets of the plethora of transcription factors, such as NAC, MYB, AP2, MADS and class III HD Zip, which are up-regulated during the auxin- and cytokinin-induced secondary growth. Taken together, these results suggest that ZePrx is directly and indirectly regulated by the plethora of hormones that control xylem differentiation, supporting the role of ZePrx in xylem lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARFs:

Auxin-response factors

ARR1:

Arabidopsis response regulator 1

Aux/IAA:

Auxin/indole-3-acetic acid

AuxREs:

Auxin-responsive cis-elements

BAP:

6-Benzylaminopurine

BES1:

BR-responsive bri1-EMS-suppressor 1

BRs:

Brassinosteroids

BZR1:

BR-responsive brassinazole-resistant 1

EB:

20-epi-Brassinolide

NAA:

1-Naphthaleneacetic acid

SAUR :

Small auxin-up RNA

ZePrx:

Basic peroxidase isoenzyme from Zinnia elegans

References

  • Baucher M, Jaziri ME, Vandeputte O (2007) From primary to secondary growth: origin and development of the vascular system. J Exp Bot 58:3485–3501

    Article  PubMed  CAS  Google Scholar 

  • Beňová-Kákošová A, Digonnet C, Goubet F, Ranocha P, Jauneau A, Pesquet E, Barbier O, Zhang Z, Capek P, Dupree P, Lisková D, Goffner D (2006) Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of Zinnia. Plant Physiol 142:696–709

    Article  PubMed  Google Scholar 

  • Demura T, Fukuda H (2006) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    Article  Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    Article  PubMed  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nature Rev Mol Cell Biol 5:379–391

    Article  CAS  Google Scholar 

  • Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from mesophyll of Zinnia elegans. Planta 155:423–430

    Article  CAS  Google Scholar 

  • Gabaldón C, López-Serrano M, Pedreño MA, Ros Barcelo A (2005) Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol 139:1138–1154

    Article  PubMed  Google Scholar 

  • Gabaldón C, López-Serrano M, Pomar F, Merino F, Cuello J, Ros Barceló A (2006) Characterization of the last step of lignin biosynthesis in Zinnia elegans suspension cell cultures. FEBS Lett 580:4311–4316

    Article  PubMed  Google Scholar 

  • Gabaldón C, Gómez Ros LV, López Núñez-Flores MJ, Esteban-Carrasco A, Ros Barceló A (2007) Post-translational modifications of the basic peroxidase isoenzyme from Zinnia elegans. Plant Mol Biol 65:43–61

    Article  PubMed  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle T (2007) Sticking with auxin. Nature 446:621–622

    Article  PubMed  CAS  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CE, Li J, Argueso C, González M, Lee E, Lewis MW, Macwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G (2004) MYB transcription factors are diffentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Mol Biol 56:255–270

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H (2000) Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J 22:289–301

    Article  PubMed  CAS  Google Scholar 

  • Ko J-H, Han K-H (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55:433–453

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  PubMed  CAS  Google Scholar 

  • Li J, Jin H (2007) Regulation of brassinosteroid signalling. Trends Plant Sci 12:37–41

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lu S, Chiang V (2006) A genomic and molecular view of wood formation. CRC Crit Rev Plant Sci 25:215–233

    Article  CAS  Google Scholar 

  • López-Serrano M, Fernández MD, Pomar F, Pedreño MA, Ros Barceló A (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. J Exp Bot 55:423–431

    Article  PubMed  Google Scholar 

  • Milloni D, Sado PE, Stacey NJ, Roberts K, McCann M (2002) Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. Plant Cell 14:2813–2824

    Article  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K-I, Nozaki H, Asami T, Yoshida S, Fujioka S (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, López-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Park S, Han K-H (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54:2709–2722

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hidroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  PubMed  CAS  Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A, Suman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754

    Article  PubMed  CAS  Google Scholar 

  • Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D (2005) Novel markers of xylogenesis in Zinnia are differentially regulated by auxin and cytokinin. Plant Physiol 139:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Phan Tran L-S, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  Google Scholar 

  • Prestridge DS (1991) Signal scan: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7:203–206

    PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Holst Christensen J, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Ros Barceló A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132

    Article  PubMed  Google Scholar 

  • Ros Barceló A (1998) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207:207–216

    Article  Google Scholar 

  • Ros Barceló A (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220:747–756

    Article  PubMed  Google Scholar 

  • Ros Barceló A, Gómez Ros LV, Esteban Carrasco A (2007) Looking for syringyl peroxidases. Trends Plant Sci 12:486–491

    Article  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 84:631–639

    Article  CAS  Google Scholar 

  • Sessa G, Morelli G, Ruberti I (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J 12:3507–3517

    PubMed  CAS  Google Scholar 

  • To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA 105:9829–9834

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Hagen G, Guilfoyle T (1997) Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci 126:193–201

    Article  CAS  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138:803–818

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the MEC (BFU2006-11577/BFI)-FEDER and CARM (08610/PI/08). JG holds a fellowship (FPI) from the MCYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Ros Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, J., López Núñez-Flores, M.J., Gómez-Ros, L.V. et al. Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans . Planta 230, 767–778 (2009). https://doi.org/10.1007/s00425-009-0982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0982-7

Keywords

Navigation