Skip to main content
Log in

In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGP:

Arabinogalactan-protein

CBM:

Carbohydrate-binding module

DIC:

Differential interference contrast

HG:

Homogalacturonan

MP:

Milk protein

PBS:

Phosphate-buffered saline

RG-I:

Rhamnogalacturonan-I

TS:

Transverse section

References

  • Andème-Onzighi C, Girault R, His I, Morvan C, Driouich A (2000) Immunocytochemical characterization of early-developing flax fiber cell walls. Protoplasma 213:235–245

    Article  Google Scholar 

  • Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329

    Article  PubMed  CAS  Google Scholar 

  • Bonatti PM, Ferrari C, Focher B, Grippo C, Torri G, Cosentino C (2004) Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications. Euphytica 140:55–64

    Article  CAS  Google Scholar 

  • Carafa A, Duckett JG, Knox JP, Ligrone R (2005) Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants. New Phytol 168:231–240

    Article  PubMed  CAS  Google Scholar 

  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Clausen MH, Ralet M-C, Willats WGT, McCartney L, Marcus SE, Thibault J-F, Knox JP (2004) A monoclonal antibody to feruloylated-(1 → 4)-β-d-galactan. Planta 219:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Cronier D, Monties B, Chabbert B (2005) Structure and chemical composition of bast fibers isolated from developing hemp stem. J Agric Food Chem 53:8279–8289

    Article  PubMed  CAS  Google Scholar 

  • De Pauw MA, Vidmar JJ, Collins J, Bennett RA, Deyholos MK (2007) Microarray analysis of bast fibre producing tissues of Cannabis sativa identifies transcripts associated with conserved and specialised processes of secondary wall development. Funct Plant Biol 34:737–749

    Article  Google Scholar 

  • Franck RR (2005) Overview. In: Franck RR (ed) Bast and other plant fibres. CRC Press, New York, pp 1–23

    Google Scholar 

  • Girault R, His I, Andeme-Onzighi C, Driouich A, Morvan C (2000) Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres. Planta 211:256–264

    Article  PubMed  CAS  Google Scholar 

  • Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  PubMed  CAS  Google Scholar 

  • His I, Andème-Onzighi C, Morvan C, Driouich A (2001) Microscopic studies on mature flax fibers embedded in LR white: immunogold localization of cell wall matrix polysaccharides. J Histochem Cytochem 49:1525–1536

    PubMed  CAS  Google Scholar 

  • Immerzeel P, Eppink MM, de Vries SC, Schols HA, Voragen AGJ (2006) Carrot arabinogalactan-proteins are interlinked with pectins. Physiol Plant 128:18–28

    Article  CAS  Google Scholar 

  • Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Article  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 → 4)-β-d-galactan. Plant Physiol 113:1405–1412

    PubMed  CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski R, Baraniecki P, Barriga-Bedoya J (2005) Bast fibres (flax, hemp, jute, ramie, kenaf, abaca) In: Blackburn RS (ed) Biodegradable and sustainable fibres. CRC Press/Woodhead, Cambridge, pp 36–88

    Google Scholar 

  • Lee KJD, Sakata Y, Mau S-L, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan-proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065

    Article  PubMed  CAS  Google Scholar 

  • Manfield IW, Bernal AJ, Møller I, McCartney L, Riess NP, Knox JP, Willats WGT (2005) Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv. Plant Sci 169:1090–1095

    Article  CAS  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770

    Article  PubMed  CAS  Google Scholar 

  • Meloche CG, Knox JP, Vaughn KC (2007) A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta 225:485–498

    Article  PubMed  CAS  Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944

    Article  CAS  Google Scholar 

  • Pena MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Article  PubMed  CAS  Google Scholar 

  • Pettolino FA, Hoogenraad NJ, Ferguson C, Bacic A, Johnson E, Stone BA (2001) A (1 → 4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans. Planta 214:235–242

    PubMed  CAS  Google Scholar 

  • Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG (1994) Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1,2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710

    Article  PubMed  CAS  Google Scholar 

  • Riddlestone S, Stott E, Blackburn K, Brighton J (2006) A technical and economic feasibility study of green decortication of hemp fibre for textile uses. J Ind Hemp 11:25–55

    Article  Google Scholar 

  • Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems indentified transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genomics. doi:10.1007/s00438-007-0241-1

  • Smallwood M, Beven A, Donovan N, Neill SJ, Peart J, Roberts K, Knox JP (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J 5:237–246

    Article  CAS  Google Scholar 

  • Smallwood M, Martin H, Knox JP (1995) An epitope of rice threonine- and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma membrane glycoproteins. Planta 196:510–522

    Article  PubMed  CAS  Google Scholar 

  • Toonen M, Ebskamp M, Kohler R (2007) Improvement of fibre and composites for new markets. In: Ranalli P (ed) Improvement of crop plants for industrial end uses, Springer, Dordrecht, pp 155–180

    Chapter  Google Scholar 

  • Vignon MR, Garcia-Jaldon C (1996) Structural features of the pectic polysaccharides isolated from retted hemp bast fibres. Carbohydr Res 296:249–260

    Article  PubMed  CAS  Google Scholar 

  • Waldron KW, Brett CT (2007) The role of polymer cross-linking in intercellular adhesion. In: Roberts JA, Gonzala-Carranza Z (eds) Plant cell separation and adhesion. Blackwell Publishing, Oxford, pp 183–204

    Chapter  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 → 5)-α-l-arabinan. Carbohydr Res 308:149–152

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties and cell adhesion. J Biol Chem 276:19404–19413

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, McCartney L, Steele-King CG, Marcus SE, Mort A, Huisman M, van Alebeek G-J, Schols HA, Voragen AGJ, Le Goff A, Bonnin E, Thibault J-F, Knox JP (2004) A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218:673–681

    Article  PubMed  CAS  Google Scholar 

  • Yates EA, Valdor J-F, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  PubMed  CAS  Google Scholar 

  • Zhou GK, Zhong R, Richardson EA, Morrison WH 3rd, Nairn CJ, Wood-Jones A, Ye ZH (2006) The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis Fragile fiber8. Plant Cell Physiol 47:1229–1240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the UK Department of Trade and Industry (DTI Project No: TP/3/BIO/6/I/15563). Authors also thank Sue Riddlestone and Robert Franck for useful discussions and Emily Stott for her hard work in the management of the collaborative project. They are grateful to Prof. Harry Gilbert (University of Newcastle-upon-Tyne) for providing the CBMs and Dr Cécile Hervé for providing the sections of flax stems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Knox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, A.W., Marcus, S.E., Copeland, J.E. et al. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L. . Planta 228, 1–13 (2008). https://doi.org/10.1007/s00425-008-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0713-5

Keywords

Navigation