Skip to main content

Advertisement

Log in

B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the ABC model of flower development, B function organ-identity genes act in the second and third whorls of the flower to control petal and stamen identity. The trioecious papaya has male, female, and hermaphrodite flowers and is an ideal system for testing the B-class gene expression patterns in trioecious plants. We cloned papaya B-class genes, CpTM6-1, CpTM6-2, and CpPI, using MADS box gene specific degenerate primers followed by cDNA library screening and sequencing of positive clones. While phylogenetic analyses show that CpPI is the ortholog of the Arabidopsis gene PI, the CpTM6-1 and CpTM6-2 loci are representatives of the paralogous TM6 lineage that contain paleoAP3 motifs unlike the euAP3 gene observed in Arabidopsis. These two paralogs appeared to have originated from a tandem duplication occurred approximately 13.4 million year ago (mya) (bootstrap range 13.36 ± 2.42). In-situ hybridization and RT-PCR showed that the papaya B-class genes were highly expressed in young flowers across all floral organ primordia. As the flower organs developed, all three B-class genes were highly expressed in petals of all three-sex types and in stamens of hermaphrodite and male flowers. CpTM6-1 expressed at low levels in sepals and carpels, whereas CpTM6-2 expressed at a low level in sepals and at a high level in leaves. Our results showed that B-class gene homologs could function as predicted by the ABC model in trioecous flowers but differential expressions of CpTM6-1, and CpTM6-2, and CpPI suggested the diversification of their functions after the duplication events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP3 :

APETALA3

BAC:

Bacterial artificial chromosome

DEF :

DEFICIENS

DIG:

Digoxigenin

GLO :

GLOBOSA

ML:

Maximum likelihood analyses

MP:

Maximum parsimony

mya:

Million year ago

NPRS:

Nonparametric rate smoothing

PI :

PISTILLATA

RACE:

Rapid amplification of cDNA ends

TM6 :

Tomato MADS-box gene 6

References

  • Ainsworth C, Crossley S, Buchanan-Wollaston V, Thangavelu M, Parker J (1995) Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583–1598

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Mol JN, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Awada M (1958) Relationships of minimum temperature and growth rate with sex expression of papaya plants (Carica papaya L.). Hawaii Agr Expt Stn Tech Bull 38:3–15

    Google Scholar 

  • Awada M, Ikeda WS (1957) Effects of water and nitrogen application on composition, growth, sugars in fruits, yield, and sex expression of the papaya plants (Carica papaya L.). Hawaii Ag Expt Stn Tech Bull 33:3–16

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Article  PubMed  CAS  Google Scholar 

  • Carr SM, Irish VF (1997) Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201:179–188

    Article  PubMed  CAS  Google Scholar 

  • Chung Y-Y, Kim S-R, Kang H-G, Noh YS, Park MC, Finkel D, An G (1995) Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci 109:45–56

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Davies B, Di Rosa A, Eneva T, Saedler H, Sommer H (1996) Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Plant J 10:663–677

    Article  PubMed  CAS  Google Scholar 

  • de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833–1845

    Article  PubMed  CAS  Google Scholar 

  • Di Stilio VS, Kramer EM, Baum DA (2005) Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)—a new model for the study of dioecy. Plant J 41:755–766

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maroto F, Salamini F, Rohde W (1993) Molecular cloning and expression patterns of three alleles of the Deficiens-homologous gene St-Deficiens from Solanum tuberosum. Plant J 4:771–780

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  PubMed  CAS  Google Scholar 

  • Guerin J, Rossel JB, Robert S, Tsuchiya T, Koltunow A (2000) A DEFECIENS homologue is down-regulated during apomictic initiation in ovules of Hieracium. Planta 210:914–920

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hansen G, Estruch JJ, Sommer H, Spena A (1993) NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern. Mol Gen Genet 239:310–312

    PubMed  CAS  Google Scholar 

  • Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell 6:1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr JDJ (1938) Genetic studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. So Afr Dept Agri Sci Bull 187:64

    Google Scholar 

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Irish VF (2003) The evolution of floral homeotic gene function. BioEssays 25:637–646

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703–716

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Yoo M-J, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102–2118

    CAS  Google Scholar 

  • Kitahara K, Hirai S, Fukui H, Matsumoto S (2001) Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Sci 161:549–557

    Article  CAS  Google Scholar 

  • Kitahara K, Ohtsubo T, Soejima J, Matsumoto S (2004) Cloning and characterization of apple class B MADS-box genes including a novel AP3 homologous MdTM6. J Japan Soc Hort Sci 73:208–215

    Article  CAS  Google Scholar 

  • Kramer EM, Irish VF (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161:S29–S40

    Article  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed  CAS  Google Scholar 

  • Kramer EM, Su HJ, Wu CC, Hu JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the Apetala3 gene lineage. BMC Evol Biol 24:1–30

    Google Scholar 

  • Kush A, Brunelle A, Shevell D, Chua NH (1993) The cDNA sequence of two MADS box proteins in Petunia. Plant Physiol 102:1051–1052

    Article  PubMed  CAS  Google Scholar 

  • Lamb RS, Irish VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA 100:6558–6563

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Magallon S, Crane PS, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86:297–372

    Article  Google Scholar 

  • Moon YH, Jung JK, Kang HG, An G (1999) Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol Biol 40:167–177

    Article  PubMed  CAS  Google Scholar 

  • Münster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G (2001) Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262:1–13

    Article  PubMed  Google Scholar 

  • Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol Biol 51:867–875

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255–266

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS-box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD, Suddith JI (1999) Molecular population genetics of floral homeotic loci: Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151:839–848

    PubMed  CAS  Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  PubMed  CAS  Google Scholar 

  • Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M (2006) Analysis of the Petunia TM6 MADS-box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18:1819–1832

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Kohalmi S, Motte P, Datla R, Haughn GW (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9:559–570

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    CAS  Google Scholar 

  • Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11:251–263

    PubMed  CAS  Google Scholar 

  • Sheppard LA, Brunner AM, Krutovskii KV, Rottmann WH, Skinner JS, Vollmer SS, Strauss SHA (2000) DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled unisexual flowers. Plant Physiol 124:627–640

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    PubMed  CAS  Google Scholar 

  • Southerton SG, Marshall H, Mouradov A, Teasdale RD (1998) Eucalypt MADS-box genes expressed in developing flowers. Plant Physiol 118:365–372

    Article  PubMed  CAS  Google Scholar 

  • Storey WB (1958) Modifications of sex expression in papaya. Hort Adv 2:49–60

    Google Scholar 

  • Swofford DL (2001) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

  • Thomas J (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11: 4693-4704

    PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-Class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741–756

    Article  PubMed  CAS  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperm: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Moore PH, Albert HH, Roader AHK, Ming R (2005) Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Res 15:576–584

    Article  PubMed  CAS  Google Scholar 

  • Zanis MJ, Soltis DE, Soltis PE, Mathews S, Donoghue MJ (2002) The root of the angiosperms revisited. Proc Natl Acad Sci USA 99:6848–6853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Elena Kramer at Harvard University for providing the refined degenerate primer sequences and PCR programs for cloning CpTM6s and CpPI, and Dr. Elliot Meyerowitz at the California Institute of Technology for providing the Arabidopsis AP3 and PI cDNA clones. We also thank the two anonymous reviewers who helped us improve the manuscript. This project was supported by a USDA T-STAR grant through the University of Hawaii and a USDA-ARS Cooperative Agreement (CA 58-3020-8-134) with the Hawaii Agriculture Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Christine M. Ackerman, Qingyi Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, C.M., Yu, Q., Kim, S. et al. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI . Planta 227, 741–753 (2008). https://doi.org/10.1007/s00425-007-0653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0653-5

Keywords

Navigation