Skip to main content
Log in

Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots

  • Original Paper
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of short-term boron deficiency on several aspects (growth, biomass allocation, metabolite concentrations, gene expression, enzyme activities) related with nitrate assimilation were studied in tobacco (Nicotiana tabacum L.) plants in order to know the early changes caused by this mineral deficiency. For this purpose, plants were grown hydroponically in a nutrient solution supplemented with 10 μM boron and then transferred to a boron-free medium for 1–5 days. Nitrate concentration decreased in both leaves and roots under boron deficiency, which was not observed in control plants. This correlated with the lower net nitrate uptake rate found in boron-deficient plants when compared to boron-sufficient ones. Results suggest that boron deficiency decreases net nitrate uptake by declining the activity of nitrate transporters rather than affecting their transcript levels. This is supported by a drop in the levels of root PMA2 transcript during the boron deficient treatment, which could lead to a decrease in the plasma membrane H+-ATPase activity necessary to get protons out of cell for the cotransport with nitrate inwards. In addition, boron deficiency led to an increase in root Asn content and a decline in glutamine synthetase activity when compared to control plants, which suggest that this mineral deficiency may promote ammonium assimilation via asparagine synthetase in tobacco roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DW:

Dry weight

GS:

Glutamine synthetase

NIA :

Nitrate reductase structural gene

NR:

Nitrate reductase

NRT1 and NRT2 :

Nitrate transport genes

PMA2 :

Plasmalemma H+-ATPase gene

References

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  PubMed  CAS  Google Scholar 

  • Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, González-Fontes A (1999) Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528–536

    Article  PubMed  Google Scholar 

  • Camacho-Cristobal JJ, Maldonado JM, González-Fontes A (2005) Boron deficiency increases putrescine levels in tobacco plants. J Plant Physiol 162:921–928

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  PubMed  CAS  Google Scholar 

  • Carvalho HG, Lopes-Cardoso IA, Lima LM, Melo PM, Cullimore JV (2003) Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression. Plant Physiol 133:243–252

    Article  PubMed  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239

    Article  PubMed  CAS  Google Scholar 

  • de la Haba P, Cabello P, Maldonado JM (1992) Glutamine-synthetase isoforms appearing in sunflower cotyledons during germination. Effects of light and nitrate. Planta 186:577–581

    Article  Google Scholar 

  • Ferrario S, Valadier MH, Foyer CH (1996) Short-term modulation of nitrate reductase activity by exogenous nitrate in Nicotiana plumbaginifolia and Zea mays leaves. Planta 199:366–371

    Article  CAS  Google Scholar 

  • Ferrol N, Belver A, Roldan M, Rodriguez-Rosales MP, Donaire JP (1993) Effects of boron on proton transport and membrane properties of sunflower (Helianthus annuus L.) cell microsomes. Plant Physiol 103:763–769

    PubMed  CAS  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    Article  PubMed  CAS  Google Scholar 

  • Galangau F, Daniel-Vedele F, Moureaux T, Dorbe MF, Leydecker MT, Caboche M (1988) Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light–dark regimes and nitrate supply. Plant Physiol 88:383–388

    PubMed  CAS  Google Scholar 

  • Harrison J, de Crescenzo MAP, Sene O, Hirel B (2003) Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus? Plant Physiol 133:253–262

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanisms, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Fraisier V, Scheible WR, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F (1998) Expression studies of Nrt2:1Np, a putative high affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 14:723–732

    Article  CAS  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  PubMed  CAS  Google Scholar 

  • Man HM, Abd-El Baki GK, Stegmann P, Weiner H, Kaiser WM (1999) The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves. Planta 209:462–468

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego, pp 379–396

    Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ 24:1119–1137

    Article  CAS  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990a) Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiol 93:281–289

    CAS  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990b) Evidence for cotransport of nitrate and protons in maize roots. II. Measurement of NO 3 and H+ fluxes with ion-selective microelectrodes. Plant Physiol 93:290–294

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Oliveira IC, Coruzzi GM (1999) Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in arabidopsis. Plant Physiol 121:301–309

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833

    Article  PubMed  CAS  Google Scholar 

  • Rufty TW (1997) Probing the carbon and nitrogen interaction: a whole plant perspective. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor & Francis, London, pp 255–273

    Google Scholar 

  • Scheible WR, González-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997a) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  Google Scholar 

  • Scheible WR, González-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze ED, Stitt M (1997b) Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203:304–319

    Article  CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997c) Accumulation of nitrate in the shoot acts as a signal to regulate shoot–root allocation in tobacco. Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Schon MK, Novacky A, Blevins DG (1990) Boron induces hyperpolarization on sunflower root cell membranes and increases membrane permeability to K+. Plant Physiol 93:566–571

    PubMed  CAS  Google Scholar 

  • Shelp BJ (1993) Physiology and biochemistry of boron in plants. In: Gupta UC (ed) Boron and its role in crop production. CRC Press, Boca Raton, pp 53–85

    Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  PubMed  CAS  Google Scholar 

  • Thum KE, Shasha DE, Lejay LV, Coruzzi GM (2003) Light- and carbon-signaling pathways. Modeling circuits of interactions. Plant Physiol 132:440–452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by D.G.I. (BOS2003-01837) and Junta de Andalucía (CVI 266), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín González-Fontes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho-Cristóbal, J.J., González-Fontes, A. Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta 226, 443–451 (2007). https://doi.org/10.1007/s00425-007-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0494-2

Keywords

Navigation