Skip to main content
Log in

A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A pathogenesis related protein (AhPR10) is identified from a clone of 6-day old Arachis hypogaea L. (peanut) cDNA library. The clone expressed as a ∼20 kDa protein in E. coli. Nucleotide sequence derived amino acid sequence of the coding region shows its homology with PR10 proteins having Betv1 domain and P loop motif. Recombinant AhPR10 has ribonuclease activity, and antifungal activity against the peanut pathogens Fusarium oxysporum and Rhizoctonia solani. Mutant protein AhPR10-K54N where lys54 is mutated to asn54 loses its ribonuclease and antifungal activities. FITC labeled AhPR10 and AhPR10-K54N are internalized by hyphae of F. oxysporum and R. solani but the later protein does not inhibit the fungal growth. This suggests that the ribonuclease function of AhPR10 is essential for its antifungal activity. Energy and temperature dependent internalization of AhPR10 into sensitive fungal hyphae indicate that internalization of the protein occurs through active uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AhPR10:

Arachis hypogaea pathogenesis related 10 protein

AhPR10-F148S:

AhPR10 mutant protein where phenylalanine148 is replaced by serine

AhPR10-H150Q:

AhPR10 mutant protein where histidine150 is replaced by glutamine

AhPR10-K54N:

AhPR10 mutant protein where lysine54 is replaced by asparagine

FITC:

Fluorescein isothiocyanate

IC50 :

Inhibitory concentration causing 50% growth inhibition

IPTG:

Isopropyl thio-β-galactoside

NaN3 :

Sodium azide

PBS:

Phosphate buffered saline, pH 7.2

PCR:

Polymerase chain reaction

PI:

Propidium iodide

PMSF:

Phenyl methyl sulfonyl fluoride

PR:

Pathogenesis related

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42:871–881

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1977) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Breda C, Sallaud C, El-Turk J, Buffard D, de Kosak I, Esnault R, Kondorosi A (1996) Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles. Mol Plant Microbe Interact 9:713–719

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Frankt RG, Terras Bruno PA, Cammue, Jos Vanderleyden (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–60

    Article  CAS  Google Scholar 

  • Bufe A, Spangfort MD, Kahlert H, Schlaak M, Becker WM (1996) The major birch pollen allergen, Bet V1, shows ribonuclease activity. Planta 199:413–415

    Article  PubMed  CAS  Google Scholar 

  • Chiang CC, Hadwiger LA (1990) Cloning and characterization of a disease resistance response gene in pea inducible by Fusarium solani. Mol Plant Microbe Interact 3:78–85

    PubMed  CAS  Google Scholar 

  • Christensen AB, Cho BH, Naesby M, Gregersen PL, Brandt J, Madriz-Ordenana K, Collinge DB, Thordal-Christensen H (2002) The molecular characterisation of the two barley proteins establishes the novel PR-17 family of pathogenesis-related protein. Mol Plant Pathol 3:134–144

    Article  Google Scholar 

  • Crowell D, John ME, Russell D, Amasino RM (1992) Characterization of a stress-induced developmentally regulated gene family from soybean. Plant Mol Biol 18:459–466

    Article  PubMed  CAS  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors-a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275

    Article  CAS  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger LA (1988) cDNA sequences for pea disease response genes. Plant Mol Biol 11:713–715

    Article  CAS  Google Scholar 

  • Hahn MG, Buchell P, Cervone F, Doares SH, O’Neil RA, Darvill AG, Albersheim P (1989) Roles of cell wall constituents in plant–pathogen interactions. In: Kosuge T, Nester EW (eds) Plant–microbe interactions—molecular and genetic perspectives, 1st edn, vol 3. McGraw-Hill, New York, pp 131–181

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H (1997) Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 197:91–100

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Chang FC, Wang CS (1997) Characterization of a lily tapetal transcript that shares similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol Biol 34:681–686

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Lee DG, Kim KL, Lee Y (2001) Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem 268:4449–4458

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Ng TB (2001) Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem Biophys Res Commun 285:419–423

    Article  PubMed  CAS  Google Scholar 

  • Lo SC, Hipskind JD, Nicholson RL (1999) cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Mol Plant Microbe Interact 12:479–489

    PubMed  CAS  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression and sequence conservation of pathogenesis related gene transcripts of potato. Mol Plant Microbe Interact 2:325–331

    PubMed  CAS  Google Scholar 

  • Midoh N, Iwata M (1996) Cloning and characterization of a probenaole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18

    PubMed  CAS  Google Scholar 

  • Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta 193:470–472

    Article  PubMed  CAS  Google Scholar 

  • Mogensen JE, Wimmer R, Larsen JN, Spangfort MD, Otzen DE (2002) The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 277:23684–23692

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Stevens NM, Vivanco JM (2002) Enzymatic specificity of three ribosome inactivating proteins against fungal ribosome, and correlation with antifungal activity. Planta 216:227–234

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    PubMed  CAS  Google Scholar 

  • Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319–330

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mooch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Sommer-Knudsen J, Clarke AE, Bacic A (1996) A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata. Plant J 9:71–83

    Article  PubMed  CAS  Google Scholar 

  • Sommer-Knudsen J, Clarke AE, Bacic A (1997) Proline- and hydroxyproline-rich gene products in the sexual tissues of flowers. Sex Plant Reprod 10:253–260

    Article  CAS  Google Scholar 

  • Somssich IE, Schmelzer E, Kawalleck P, Hahlbrock K (1988) Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet 213:93–98

    Article  PubMed  CAS  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    PubMed  CAS  Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T,Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Stien EA (1999) The families of pathogenesis related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Walter MH, Liu J-W, Grand C, Lamb CJ, Hess D (1990) Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol Gen Genet 222:353–360

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Liu J-W, Wunn J, Hess D (1996) Bean ribonuclease-like pathogenesis-related protein genes (Ypr10) display complex patterns of developmental, dark-induced and exogenous-stimulus dependent expression. Eur J Biochem 239:281–293

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Ng TB (2000) Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation—inhibitory activities from American ginseng roots. Biochem Biophys Res Commun 269:203–208

    Article  PubMed  CAS  Google Scholar 

  • Warner SAJ, Scott R, Draper J (1992) Characterization of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related (PR) proteins. Plant Mol Biol 19:555–561

    Article  PubMed  CAS  Google Scholar 

  • Warner SAJ, Gill A, Draper J (1994) The developmental expression of the asparagus intracellular PR protein (AoPR1) gene correlates with sites of phenylpropanoid biosynthesis. Plant J 6:31–34

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Yan M, Li Y, Chang S, Song X, Zhou Z, Gong W (2003) cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus. Biochem Biophys Res Commun 312:761–766

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ambudkar I, Yamagishi H, Swaim W, Walsh TJ, Oconnell BC (1999) Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother 43:2256–2262

    PubMed  CAS  Google Scholar 

  • Yen Y, Green PJ (1991) Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol 97:1487–1493

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa A, Kuwahara J, Fujii N, Sugiura Y (1992) Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31:2998–3004

    Article  PubMed  CAS  Google Scholar 

  • Zhou XJ, Shan Lu, Xu YH, Wang JW, Chen XY (2002) A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Sci 162:629–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Director of the Institute of Genomics and Integrative Biology for providing the infrastructural facilities to carry out this work. Authors also thank Dr. Pratibha Sharma of Mycology and Plant Pathology Division, IARI, New Delhi, India for providing the fungal pathogens. PC is the recipient of Research Fellowship from CSIR (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakha H. Das.

Additional information

The nucleotide sequence of AhPR10 reported in this paper is submitted to NCBI Nucleotide Sequence Database under the Accession number AY726607.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadha, P., Das, R.H. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225, 213–222 (2006). https://doi.org/10.1007/s00425-006-0344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0344-7

Keywords

Navigation