Skip to main content
Log in

Identification of Primula “front-end” desaturases with distinct n−6 or n−3 substrate preferences

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

cDNA clones encoding cytochrome b5 fusion desaturases were isolated from Primula cortusoides L. and Primula luteola Ruprecht, species previously shown to preferentially accumulate either n−6 or n−3 Δ6-desaturated fatty acids, respectively. Functional characterisation of these desaturases in yeast revealed that the recombinant Primula enzymes displayed substrate preferences, resulting in the predominant synthesis of either γ-linolenic acid (n−6) or stearidonic acid (n−3). Independent expression of the two Primula desaturases in transgenic Arabidopsis thaliana confirmed these results, with γ-linolenic acid and stearidonic acid accumulating in both leaf and seed tissues to different levels, depending on the substrate specificity of the desaturase. Targeted lipid analysis of transgenic Arabidopsis lines revealed the presence of Δ6-desaturated fatty acids in the acyl-CoA pools of leaf but not seed tissue. The implications for the transgenic synthesis of C20 polyunsaturated fatty acids via the elongation of Δ6-desaturated fatty acids are discussed, as is the potential of using Primula desaturases in the synthesis of C18 n−3 polyunsaturated fatty acids such as stearidonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

ARA:

Arachidonic acid

DAG:

Diacylglycerol

EPA:

Eicosapentaenoic acid

GLA:

γ-Linolenic acid

LA:

Linoleic acid

LC-PUFA:

Long chain polyunsaturated fatty acid

MGDG:

Monogalactosyl diacylglycerol

ORF:

Open reading frame

PC:

Phosphatidylcholine

SDA:

Stearidonic acid

TAG:

Triacylglycerol

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • Aitzetmuller K, Tsevegsuren N (1994) Seed fatty acids, “front-end”-desaturase and chemotaxonomy—a case study in the Ranunculaceae. J Plant Physiol 143:538–543

    Google Scholar 

  • Beaudoin F, Napier JA (2004) Biosynthesis and compartmentation of triacylglycerol in higher plants. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Springer, Berlin Heidelberg New York, pp 267–287

    Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris 316:1194-1199

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea S, Guillou H, Jan S, Catheline D, Thibault JN, Bouriel M, Rioux V, Legrand P (2002) The same rat Δ6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem J 364:49–55

    PubMed  Google Scholar 

  • Fraser TC, Qi B, Elhussein S, Chatrattanakunchai S, Stobart AK, Lazarus CM (2004) Expression of the Isochrysis C18-Δ9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol 135:859–866

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maroto F, Garrido-Cardenas JA, Rodriguez-Ruiz J, Vilches-Ferron M, Adam AC, Polaina J, Alonso DL (2002) Cloning and molecular characterization of the Δ6-desaturase from two Echium plant species: production of GLA by heterologous expression in yeast and tobacco. Lipids 37:417–426

    Article  PubMed  CAS  Google Scholar 

  • Guillou H, D’andrea S, Rioux V, Jan S, Legrand P (2004) The surprising diversity of Δ6-desaturase substrates. Biochem Soc Trans 32:86–87

    Article  PubMed  CAS  Google Scholar 

  • Gunstone FD (1992) Gamma linolenic acid—occurrence and physical and chemical properties. Prog Lipid Res 31:145–161

    Article  PubMed  CAS  Google Scholar 

  • James MJ, Ursin VM, Cleland LG (2003) Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n−3 fatty acids. Am J Clin Nutr 77:1140–1145

    PubMed  CAS  Google Scholar 

  • Larson TR, Graham IA (2001) Technical advance: a novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 25:115–125

    Article  PubMed  CAS  Google Scholar 

  • Larson TR, Edgell T, Byrne J, Dehesh K, Graham IA (2002) Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J 32:519–527

    Article  PubMed  CAS  Google Scholar 

  • Libisch B, Michaelson LV, Lewis MJ, Shewry PR, Napier JA (2000) Chimeras of Δ6-fatty acid and Δ8-sphingolipid desaturases. Biochem Biophys Res Commun 279:779–785

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Sayanova O, Sperling P, Heinz E (1999) A growing family of cytochrome b5 fusion desaturases. Trends Plant Sci 4:2–4

    Article  Google Scholar 

  • Napier JA, Michaelson LV, Sayanova O (2003) The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 68:135–143

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Sayanova O, Qi B, Lazarus CM (2004) Progress toward the production of long-chain polyunsaturated fatty acids in transgenic plants. Lipids 39:1067–1075

    PubMed  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004) Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  CAS  Google Scholar 

  • Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94:4211–4216

    Article  PubMed  CAS  Google Scholar 

  • Sayanova O, Napier JA, Shewry PR (1999) Δ6-unsaturated fatty acids in species and tissues of the Primulaceae. Phytochemistry 52:419–422

    Article  CAS  Google Scholar 

  • Sayanova OV, Beaudoin F, Michaelson LV, Shewry PR, Napier JA (2003) Identification of primula fatty acid Δ6-desaturases with n−3 substrate preferences. FEBS Lett 542:100–104

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Zahringer U, Heinz E (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273:28590–28596

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73–95

    Article  PubMed  CAS  Google Scholar 

  • Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274

    PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Whitney HM, Michaelson LV, Sayanova O, Pickett JA, Napier JA (2003) Functional characterisation of two cytochrome b5-fusion desaturases from Anemone leveillei: the unexpected identification of a fatty acid Δ6-desaturase. Planta 217:983–992

    Article  PubMed  CAS  Google Scholar 

  • Wolff RL, Lavialle O, Pedrono F, Pasquier E, Deluc LG, Marpeau AM, Aitzetmuller K (2001) Fatty acid composition of Pinaceae as taxonomic markers. Lipids 36:439–451

    Article  PubMed  CAS  Google Scholar 

  • Zhou X-R, Robert S, Singh S, Green A (2006) Heterologous production of GLA and SDA by expression of an Echium plantagineum Δ6-desaturase gene. Plant Sci 170:665–673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from BBSRC (UK). The authors gratefully acknowledge the support of BASF Plant Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan A. Napier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayanova, O., Haslam, R., Venegas-Calerón, M. et al. Identification of Primula “front-end” desaturases with distinct n−6 or n−3 substrate preferences. Planta 224, 1269–1277 (2006). https://doi.org/10.1007/s00425-006-0306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0306-0

Keywords

Navigation