Skip to main content
Log in

Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6−phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cM:

Kosambi values

DAF:

Days after flowering

OsHXK:

Rice hexokinase

UDT1 :

Undeveloped tapetum 1

UTR:

Untranslated region

References

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2:31–40

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas ML, Cornish-Bowden A, Ureta T (1998) Evolution and regulatory role of the hexokinases. Biochim Biophys Acta 1401:242–264

    Article  PubMed  Google Scholar 

  • Cheng WH, Chourey PS (1999) Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor Appl Genet 98:485–495

    Article  CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirao T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cho J-I, Lee S-K, Ko S, Kim H-K, Jun S-H, Lee Y-H, Bhoo SH, Lee K-W, An G, Hahn T-R, Jeon J-S (2005) Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep 24:225–236

    Article  PubMed  CAS  Google Scholar 

  • Da-Silva WS, Rezende GL, Galina A (2001) Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation. J Exp Bot 359:1191–1201

    Article  Google Scholar 

  • Dai N, Schaffer AA, Petreikov M, Granot D (1995) Arabidopsis thaliana hexokinase cDNA isolated by complementation of yeast cells. Plant Physiol 108:879–880

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • De Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx (1996) Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241:633–643

    Article  PubMed  Google Scholar 

  • Dian W, Jiang H, Chen Q, Liu F, Wu P (2003) Cloning and characterization of the granule-bound starch synthase II gene in rice: Gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218:261–268

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Schulze WX, Lalonde S (2003) Hexokinase, Jack-of-all-trades. Science 300:261–263

    Article  PubMed  CAS  Google Scholar 

  • Giese JO, Herbers K, Hoffmann M, Klosgen RB, Sonnewald U (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett 579:827–831

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    Article  PubMed  CAS  Google Scholar 

  • Guglielminetti L, Perata P, Morita A, Loreti E, Yamaguchi J, Alpi A (2000) Characterization of isoforms of hexose kinases in rice embryo. Phytochemistry 53:195–200

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Purcell PC, Hardie DG (1999) Is hexokinase really a sugar sensor in plants? Trends Plant Sci 4:117–120

    Article  PubMed  Google Scholar 

  • Harrington GN, Bush DR (2003) The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15:2493–2496

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  PubMed  CAS  Google Scholar 

  • Herrero P, Galíndez J, Ruiz N, Martínez-Campa C, Moreno F (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11:137–144

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Takano M, Terao T (2002) Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol 43:452–459

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  CAS  Google Scholar 

  • Jeon J-S, Lee S, Jung K-H, Jun S-H, Jeong D-H, Lee J-W, Kim C, Jang S, Lee S-Y, Yang K, Nam J, An K, Han M-J, Sung R-J, Choi H-S, Yu J-H, Choi J-H, Cho S-Y, Cha S-S, Kim S-I, An G (2000a) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  Google Scholar 

  • Jeon J-S, Lee S, Jung K-H, Jun S-H, Kim C, An G (2000b) Tissue-preferential expression of a rice α-Tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  CAS  Google Scholar 

  • Jiang H, Dian W, Liu F, Wu P (2003) Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry 62:47–52

    Article  PubMed  CAS  Google Scholar 

  • Jun S-H, Han M-J, Lee S, Seo Y-S, Kim W-T, An G (2004) OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol 45:281–289

    Article  PubMed  CAS  Google Scholar 

  • Jung K-H, Han M-J, Lee Y-S, Kim Y-W, Hwang I, Kim M-J, Kim Y-K, Nahm BH, An G (2005) Rice Uundeveloped Tapetum1 gene is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  PubMed  CAS  Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kuser PR, Krauchenco S, Antunes OA, Polikarpov I (2000) The high resolution crystal structure of yeast hexokinase PII with the correct primary sequence provides new insights into its mechanism of action. J Biol Chem 275:20814–20821

    Article  PubMed  CAS  Google Scholar 

  • Lim JD, Cho J-I, Park Y-I, Hahn T-R, Choi S-B, Jeon J-S (2006) Sucrose transport from source to sink seeds in rice. Physiol Planta, in press

  • Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A (2004) Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol 186:6915–6927

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Cheng SH, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    Article  PubMed  CAS  Google Scholar 

  • Perata P, Matsukura C, Vernieri P, Yamaguchi J (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:2197–2208

    Article  PubMed  CAS  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  PubMed  CAS  Google Scholar 

  • Renz A, Stitt M (1993) Substrate specificity and product inhibition of different forms of fructokinase and hexokinase in developing potato tubers. Planta 190:166–175

    CAS  Google Scholar 

  • Ritte G, Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytol 159:195–202

    Article  CAS  Google Scholar 

  • Ritte G, Rosenfeld J, Rohrig K, Raschke K (1999) Rates of sugar uptake by guard cell protoplasts of pisum sativum L. Related to the solute requirement for stomatal opening. Plant Physiol 121:647–656

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002a) Sugar sensing and signaling in plants. Plant Cell 14:S185–205

    CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002b) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    CAS  Google Scholar 

  • Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of α-Amy2 genes. Plant Mol Biol 29:691–702

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Antonio BA, Mukai Y, Nagasaki H, Sakai Y, Makino K, Sasaki T (2000) INE: a rice genome database with an integrated map view. Nucleic Acids Res 28:97–101

    Article  PubMed  CAS  Google Scholar 

  • Schleucher J, Vanderveer PJ, Sharkey TD (1998) Export of carbon from chloroplasts at night. Plant Physiol 118:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Laporte M, Lu Y, Weise S, Weber AP (2004) Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biol 6:280–288

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (1998) Sugar regulation of gene expression in plants. Curr Opin Plant Biol 1:230–234

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S, Rook F (1997) Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 115:7–13

    PubMed  CAS  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Toyota K, Tamura M, Ohdan T, Nakamura Y (2006) Expression profiling of starch metabolism-related plastidic translocator genes in rice. Planta 223:248–257

    Article  PubMed  CAS  Google Scholar 

  • Umemura T, Perata P, Futsuhara Y, Yamaguchi J (1998) Sugar sensing and α-amylase gene repression in rice embryos. Planta 204:420–428

    Article  PubMed  CAS  Google Scholar 

  • Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501

    Article  PubMed  CAS  Google Scholar 

  • Weise SE, Weber AP, Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482

    Article  PubMed  CAS  Google Scholar 

  • Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge U, Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants - a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light. Effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–335

    Article  CAS  Google Scholar 

  • Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46:177–181

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wolf B. Frommer (Carnegie Institution, USA) for the yeast shuttle vector pDR196 and Dr. Yeon-Il Park (Chungnam National University, Korea), Dr. Jong-Min Nam (California Institute of Technology, USA) and Dr. Sangtae Kim (University of Florida, USA) for helpful discussions. We also thank the members of the Plant Metabolism Research Center (PMRC) for helpful discussions. This work was supported, in part, by grants from the SRC program of MOST/KOSEF (R11-2000-081) through the Plant Metabolism Research Center; from the Biogreen 21 Program, Rural Development Administration, from the Crop Functional Genomic Center (CG1422 and CG1111), the 21 Century Frontier Program, and from the BK21 program, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Ryong Hahn or Jong-Seong Jeon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JI., Ryoo, N., Ko, S. et al. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224, 598–611 (2006). https://doi.org/10.1007/s00425-006-0251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0251-y

Keywords

Navigation