Skip to main content
Log in

UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Arabidopsis UDP-sugar pyrophosphorylase (AtUSP) is a broad substrate enzyme that synthesizes nucleotide sugars. The products of the AtUSP reaction can act as precursors for the synthesis of glycolipids, glycoproteins, and cell wall components including pectin and hemicellulose. AtUSP has no close homologs in Arabidopsis and its biological function has not been clearly defined. We identified two T-DNA insertional mutant lines for AtUSP, usp-1 and usp-2. No homozygous individuals were identified and progeny from plants heterozygous for usp-1 or usp-2 showed a 1:1 segregation ratio under selection. Despite decreased levels of both AtUSP transcript and USP activity (UDP-GlcA→GlcA-1-P), heterozygous plants were indistinguishable from wild type at all stages of development. Reciprocal test crosses indicated the source of the segregation distortion was lack of transmission through the male gametophyte. Analysis of pollen tetrads from usp-1 in the quartet background revealed a 2:2 ratio of normal:collapsed pollen grains. The collapsed pollen grains were not viable as determined by Alexander’s viability and DAPI staining, and pollen germination tests. The pollen phenotype of usp-1 was complemented by transformation of usp-1 with the AtUSP cDNA sequence. Surface and ultrastructural analyses of pollen from wild-type and usp mutants demonstrated that the mutation had no apparent effect on the outer wall (exine) but prevented the synthesis of the pectocellulosic inner wall (intine). Evidence presented here shows that AtUSP has a critical role in pollen development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ara:

arabinose

Fuc:

fucose

Gal:

galactose

Glc:

glucose

GlcA:

glucuronic acid

Man:

mannose

GlcNAc:

N-acetylglucosamine

Rha:

rhamnose

UDP:

uridine diphosphate

Xyl:

xylose

NPTII :

neomycin phosphotransferase II

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  PubMed  CAS  Google Scholar 

  • Ahmed AER, Labavitch JM (1977) A simplified method for accurate determination of cell wall uronide content. J Food Biochem 1:361–365

    Article  CAS  Google Scholar 

  • Alexander MP (1980) A versatile stain for pollen, fungi, yeast and bacteria. Stain Technol 55:13–18

    PubMed  CAS  Google Scholar 

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dickinson DB, Hyman D, Gonzales JW (1977) Isolation of uridine 5′-pyrophosphate glucuronic acid pyrophosphorylase and its assay using 32P-pyrophosphate. Plant Physiol 59:1082–1084

    PubMed  CAS  Google Scholar 

  • Feingold DS, Avigad G (1980) Sugar nucleotide transformations in plants. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 3. Academic, New York, pp 101–170

  • Feingold DS, Neufeld EF, Hassid WZ (1958) Enzymic synthesis of uridine diphosphate glucuronic acid and uridine diphosphate galacturonic acid with extracts from Phaseolus aureus seedlings. Arch Biochem Biophys 78:401–406

    Article  PubMed  CAS  Google Scholar 

  • Gibeaut DM, Carpita NC (1991) Tracing cell wall biogenesis in intact cells and plants: Selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol 97:551–561

    Article  PubMed  CAS  Google Scholar 

  • Giberson RT, Demaree RE Jr Nordhausen RW (1997) Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J Vet Diagn Invest 9:61–67

    PubMed  CAS  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Lozovaya VV, Carpita NC (1997) Turnover of galactans and other cell wall polysaccharides during development of flax plants. Plant Physiol 114:723–729

    PubMed  CAS  Google Scholar 

  • Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, Jürgens G, Hülskamp M (1999) Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 151:849–863

    PubMed  CAS  Google Scholar 

  • Hanaichi T, Sato T, Iwamoto T, Malavasi-Yamashiro J, Hoshino M, Mizuno N (1986) A stable lead by modification of Sato’s method. J Electron Microsc 35:304–306

    CAS  Google Scholar 

  • Hondo T, Hara A, Funaguma T (1983) Purification and properties of UDP-glucuronate pyrophosphorylase from pollen of Typha latifolia Linne. Plant Cell Physiol 24:1535–1543

    CAS  Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149:621–631

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Johnson-Brousseau SA, McCormick S (2004) A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J 39:761–775

    Article  PubMed  CAS  Google Scholar 

  • Kärkönen A (2005) Biosynthesis of UDP-GlcA: via UDPGDH or the myo-inositol oxidation pathway? Plant Biosystems 139:46–49

    Google Scholar 

  • Kärkönen A, Murigneux A, Martinant J-P, Pepey E, Tatout C, Dudley BJ, Fry SC (2005) UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis. Biochem J 391:409–415

    Article  PubMed  CAS  Google Scholar 

  • Kotake T, Yamaguchi D, Ohzono H, Hojo S, Kaneko S, Ishida HK, Tsumuraya Y (2004) UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J Biol Chem 279:45728–45736

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JD (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3:493–494

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA, Loewus MW (1983) myo-Inositol: Its biosynthesis and metabolism. Ann Rev Plant Physiol 34:137–161

    Article  CAS  Google Scholar 

  • Lozovaya VV, Zabotina OA, Widholm JM (1996) Synthesis and turnover of cell-wall polysaccharides and starch in photosynthetic soybean suspension cultures. Plant Physiol 111:921–929

    PubMed  CAS  Google Scholar 

  • Otozai K, Taniguchi H, Nakamura M (1973) UDP-glucose pyrophosphorylase from tubers of Jerusalem artichoke (Helianthus tuberosus L.). Agr Biol Chem 37:531–537

    CAS  Google Scholar 

  • Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65

    Article  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    Article  PubMed  CAS  Google Scholar 

  • Roberts RM (1971) The formation of uridine diphosphate-glucuronic acid in plants: uridine diphosphate-glucuronic acid pyrophosphorylase from barley seedlings. J Biol Chem 246:4995–5002

    PubMed  CAS  Google Scholar 

  • Roberts RM, Cetorelli JJ (1973) UDP-D-Glucuronic acid pyrophosphorylase and the formation of UDP-D-glucuronic acid in plants. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic, New York, pp 49–68

    Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Seitz B, Klos C, Wurm M, Tenhaken R (2000) Matrix polysaccharide precursors in Arabidiopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. Plant J 21:537–546

    Article  PubMed  CAS  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchinson D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos JR, Spychalla JP, Desborough SL (1993) Pyrophosphorylases in Solanum tuberosum IV. Purification, tissue localization, and physiochemical properties of UDP-glucose pyrophosphorylase. Plant Physiol 101:1073–1080

    PubMed  CAS  Google Scholar 

  • Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD (1996) Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase. J Biol Chem 271:13147–13154

    Article  PubMed  CAS  Google Scholar 

  • Taylor PE, Glover JA, Lavithis M, Craig S, Singh MB, Knox RB, Dennis ES, Chaudhury AM (1998) Genetic control of male fertility in Arabidopsis thaliana: structural analyses of postmeiotic developmental mutants. Planta 205:492–505

    Article  PubMed  CAS  Google Scholar 

  • Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala Method): collaborative study. J AOAC Int 78:1030–1044

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gib Ahlstrand for assistance with scanning and transmission electron microscopy and Ted Jeo for cell wall carbohydrate analysis. We would also like to thank Renee Schirmer and Ann Chaptman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Gronwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnurr, J.A., Storey, K.K., Jung, HJ.G. et al. UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta 224, 520–532 (2006). https://doi.org/10.1007/s00425-006-0240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0240-1

Keywords

Navigation