Skip to main content
Log in

Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2001) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bennett AB (2003) Out of the Amazon: Theobroma cacao enters the genomic era. Trends Plant Sci 8:561–563

    Article  PubMed  CAS  Google Scholar 

  • Bolar J, Norelli J, Harman G, Brown S, Aldwinckle H (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1–2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12:497–508

    Article  PubMed  CAS  Google Scholar 

  • Cedeño L, Carrero C (2003) Antracnosis del cacao. Universidad de los Andes http://www.ulauniversidad.com.ve/vnews/display.v/ART/2003/06/30/3f009da56c4c4?in_archive=1

  • Coe SD, Coe MD (1996) The true history of chocolate. Thames and Hudson, New York

    Google Scholar 

  • Collinge D, Kragh K, Mikkelsen J, Nielsen K, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • De-Block M, Herrerra-Estrella L, Van Montagu M, Shell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3:1681–1689

    PubMed  CAS  Google Scholar 

  • Dufresne M, Perfect S, Pellier AL, Bailey JA, Langin T (2000) A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. Plant Cell 12:1579–1589

    Article  PubMed  CAS  Google Scholar 

  • Dumas B, Centis S, Sarrazin N, Esquerré-Tugayé M-T (1999) Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection. Appl Environ Microbiol 65:1769–1771

    PubMed  CAS  Google Scholar 

  • Emch M (2003) The human ecology of Mayan cacao farming in Belize. Hum Ecol 31:111–132

    Article  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Kellmann JW, Kleinow T, Engelhardt K, Philipp C, Wegener D, Schell J, Schreier PH (1996) Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Plant Mol Biol 30:351–358

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Traore A, Maximova S, Guiltinan MJ (1998) Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using thidiazuron. In Vitro Cell Dev Biol Plant 34:293–299

    Article  CAS  Google Scholar 

  • Linthorst HJ, van Loon LC, van Rossum CM, Mayer A, Bol JF, van Roekel JS, Meulenhoff EJ, Cornelissen BJ (1990) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3:252–258

    PubMed  CAS  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ Sci 5:133–136

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filipone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  PubMed  CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998) Expression of a chitinase transgene in rose (Rosa hybrida L) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194

    Article  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Maximova SN, Alemanno L, Young A, Ferriere N, Traore A, Guiltinan M (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol Plant 38:252–259

    Article  Google Scholar 

  • Maximova S, Miller C, Antunez de Mayolo G, Pishak S, Young A, Guiltinan MJ (2003) Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep 21:872–883

    PubMed  CAS  Google Scholar 

  • Maximova SN, Young A, Pishak S, Miller C, Traore A, Guiltinan MJ (2005) Integrated system for propagation of Theobroma cacao L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Berlin Heidelberg New York, pp 209–229

    Chapter  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  PubMed  CAS  Google Scholar 

  • Michiels A, Van den Ende W, Tucker M, Van Riet L, Van Laere A (2003) Extraction of high-quality genomic DNA from latex-containing plants. Anal Biochem 315:85–89

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Mohanan RC, Kaveriappa KM, Nambiar KKN (1989) Epidemiological studies of Colletotrichum gloeosporioides disease of cocoa. Ann Appl Biol 114:15–22

    Article  Google Scholar 

  • Mora A, Earl E (2001) Resistance to Alternaria brassicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, New York, pp 77–107

    Google Scholar 

  • O’Connell RJ, Perfect SE, Hughes HB, Carzaniga R, Bailey JA, Green JR (2000) Dissecting the cell biology of Colletotrichum infection processes. In: Prusky D, Freeman S, Dickman M (eds) Host specificity, pathology, and host–pathogen interaction of Colletotrichum. American Phytopathology Society Press, St Paul, pp 57–77

    Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerre-Tugaye M-T, Dumas B (2004) A novel Arabidopsis–Colletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Mol Plant Microbe Interact 17(3):272–282

    Article  PubMed  CAS  Google Scholar 

  • Patil VR, Widholm JM (1997) Possible correlation between increased vigor and chitinase activity expression in tobacco. J Exp Bot 48:1943–1950

    Article  CAS  Google Scholar 

  • Perfect SE, Hugues HB, O’Connel RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198

    Article  PubMed  CAS  Google Scholar 

  • Piasentin F, Klare-Repnik L (2004) Biodiversity conservation and cocoa agroforests. Gro Cocoa 5:7–8. http://www.cabicommodities.org/Acc/ACCrc/

    Google Scholar 

  • Punja ZK, Raharjo SHT (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis 80:999–1005

    Article  CAS  Google Scholar 

  • Raharjo SHT, Hernandez MO, Zhang YY, Punja ZK (1996) Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep 15:591–596

    Article  CAS  Google Scholar 

  • Snyder T (1994) Isolation and characterization of a genomic chitinase clone form Theobroma cacao L. PhD thesis, Intercollege Program in Plant Physiology, The Pennsylvania State University

  • Snyder-Leiby TE, Furtek DB (1995) A genomic clone (accession no. U30324) from Theobroma cacao L. with high similarity to plant class I endochitinase sequences. Plant Physiol 109:338

    Google Scholar 

  • Tabaeizadeh Z (1997) Transgenic tomato plants expressing L. chilense chitinase gene demonstrate resistance to Verticillium dahliae. Plant Physiol 114:299

    Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    PubMed  CAS  Google Scholar 

  • Wood GAR, Lass RA (1987) Cocoa. Longman Scientific & Technical, copublished by Wiley, New York

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Rep 20:417a–417e

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Gabriela Antunez de Mayolo Wilmking for her contribution to the construction of vector pGAM00.0511 and Sara Milillo and Amanda Thompson for their technical assistance with performing and data analysis of the chitinase protein activity assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Guiltinan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maximova, S.N., Marelli, JP., Young, A. et al. Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides . Planta 224, 740–749 (2006). https://doi.org/10.1007/s00425-005-0188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0188-6

Keywords

Navigation