Skip to main content
Log in

Expression of the ubiquitin variant ubR48 decreases proteolytic activity in Arabidopsis and induces cell death

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The ubiquitin–proteasome pathway is the major route for protein degradation in eukaryotes. We show here that this pathway can be inhibited in Arabidopsis thaliana by expression of a ubiquitin variant that contains Arg instead of Lys at position 48 (ubR48). A major consequence of ubR48 expression is the induction of cell death. Cell death induction coincides with the appearance of reactive oxygen intermediates, but is independent of salicylic acid. We found changes in expression of some defense-related genes, but these changes are apparently insufficient to cause alterations in the response to a bacterial pathogen. Expression of ubR48 from an inducible gene allowed investigation of kinetic parameters of cell death induction. In the absence of additional stress factors, slow death processes dominate if the transgene is induced in seedlings older than 2 weeks. The inducible gene also allowed isolation of suppressor mutants. Expression of ubR48 may cause changes similar to inhibition of the proteasome, which also induces various forms of cell death. Thus, ubR48 is a tool to manipulate protein turnover and to probe cell death programs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

Dex:

Dexamethasone

DHFR:

Dihydrofolate reductase

GUS:

β-glucuronidase from E. coli

HR:

Hypersensitive response

Me-JA:

Jasmonic acid–methyl ester

MTX:

Methotrexate

NBT:

Nitroblue tetrazolium

PCD:

Programmed cell death

ROI:

Reactive oxygen intermediate

SA:

Salicylic acid

References

  • Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RF, Moore DO, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bachmair A, Becker F, Masterson RV, Schell J (1990) Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J 9:4543–4549

    PubMed  CAS  Google Scholar 

  • Bachmair A, Becker F, Schell J (1993) Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent protein degradation. Proc Natl Acad Sci USA 90:418–421

    Article  PubMed  CAS  Google Scholar 

  • Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci 6:463–470

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak S-S, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun D-J (2004) Bax-induced cell death of Arabidopsis is mediated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  PubMed  CAS  Google Scholar 

  • Bartke T, Pohl C, Pyrowolakis G, Jentsch S (2004) Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol Cell 14:801–811

    Article  PubMed  CAS  Google Scholar 

  • Becker F, Buschfeld E, Schell J, Bachmair A (1993) Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant J 3:875–881

    Article  Google Scholar 

  • Bohlmann H, Vignutelli A, Hilpert B, Miersch O, Wasternack C, Apel K (1998) Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett 437:281–286

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotech J 1:3–22

    Article  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Klessig DF, Bachmair A (1998) Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Rep 17:876–888

    Article  CAS  Google Scholar 

  • Curtis MJ, Wolpert TJ (2002) The oat mitochondrial permeability transition and its implication in victorin binding and induced cell death. Plant J 29:295–312

    Article  PubMed  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl J (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  PubMed  CAS  Google Scholar 

  • Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK (2002) Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci USA 99:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner M (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • Gray J (2004) Programmed cell death in plants. Blackwell, Oxford

    Google Scholar 

  • Hadi MZ, Kemper E, Wendeler E, Reiss B (2002) Simple and versatile selection of Arabidopsis transformants. Plant Cell Rep 21:130–135

    Article  CAS  Google Scholar 

  • Hare PD, Seo HS, Yang J-Y, Chua N-H (2003) Modulation of sensitivity in plant signaling by proteasomal destabilization. Curr Opin Plant Biol 6:453–462

    Article  PubMed  CAS  Google Scholar 

  • van der Hoorn RAL, Jones JD (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7:400–407

    Article  PubMed  CAS  Google Scholar 

  • Hunt MD, Delaney TP, Dietrich RA, Weymann KB, Dangl JL, Ryals JA (1997) Salicylate-independent lesion formation in Arabidopsis lsd mutants. Molec Plant Microbe Interact 5:531–536

    Article  Google Scholar 

  • Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen SR, Tang XY, Dickman MB, Collmer A, Alfano JR (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37:554–565

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Ahn J-W, Jin U-H, Choi D, Paek K-H, Pai H-S (2003) Activation of programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chemy Biol 8:739–758

    Article  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Rédei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9:1337–1346

    PubMed  CAS  Google Scholar 

  • Kwee H-S, Sundaresan V (2003) The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. Plant J 36:853–866

    Article  PubMed  CAS  Google Scholar 

  • Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96:7956–7961

    Article  PubMed  CAS  Google Scholar 

  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767

    Article  PubMed  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ling R, Colón E, Dahmus ME, Callis J (2000) Histidine-tagged ubiquitin substitutes for wild-type ubiquitin in Saccharomyces cerevisiae and facilitates isolation and identification of in vivo substrates of the pathway. Anal Biochem 282:54–64

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277:36611–36616

    Article  PubMed  CAS  Google Scholar 

  • Manners JM, Penninckx IAMA, Vermaere K, Kazan K, Brown RL, Morgan A, Maclean DJ, Curtis MD, Cammue BPA, Broeckaert WF (1998) The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 33:425–434

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Puolaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99:14374–14379

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin–proteasome pathway and plant development. Plant Cell 16:3181–3195

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Métraux J-P (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Nibbe M, Hilpert B, Wasternack C, Miersch O, Apel K (2002) Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes. Planta 216:120–128

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann Jr H, Kangasjärvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–186

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nature Biotechol 21:921–926

    Article  CAS  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Métraux J-P, Manners JM, Broeckaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Stary S, Schlögelhofer P, Becker F, Nejinskaia V, Bachmair A (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci USA 95:7904–7908

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Dangl JL (1995) The avrRPM1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Molec Plant-Microbe Interact 8:444–453

    CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schlögelhofer P, Bachmair A (2002) A test of fusion protein stability in the plant Arabidopsis thaliana reveals degradation signals from ACC synthase and from the plant N-end rule pathway. Plant Cell Rep 21:174–179

    Article  CAS  Google Scholar 

  • Schlögelhofer P, Nizhynska V, Feik N, Chambon C, Potuschak T, Wanzenböck E-M, Schweizer D, Bachmair A (2002) The upstream Sal repeat-containing segment of Arabidopsis thaliana ribosomal DNA intergenic region (IGR) enhances the activity of adjacent protein-coding genes. Plant Mol Biol 49:655–667

    Article  PubMed  Google Scholar 

  • Schwechheimer C, Schwager K (2004) Regulated proteolysis and plant development. Plant Cell Rep 23:353–364

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–777

    Article  PubMed  CAS  Google Scholar 

  • Stary S, Yin X-j, Potuschak T, Schlögelhofer P, Nizhynska V, Bachmair A (2003) PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol 133:1360–1366

    Article  PubMed  CAS  Google Scholar 

  • Sun X-M, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81–93

    Article  PubMed  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, van Montagu M, van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using Kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H-J, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Envir 25:717–726

    Article  CAS  Google Scholar 

  • Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yu X (2003) Regulation of apoptosis: the ubiquitous way. FASEB J 17:790–799

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Ito M, Callis J, Nishida I, Watanabe A (2002) A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32:129–137

    Article  PubMed  CAS  Google Scholar 

  • Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase complex. Genes Dev 13:2039–2058

    Article  PubMed  CAS  Google Scholar 

  • Zeng L-R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang G-L (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Celenza (Boston University, Boston, USA), J. Dangl, and M. A. Torres (University of North Carolina, Chapel Hill, USA) and Syngenta Biotechnology Inc. (Research Triangle Park, USA) for plants and bacteria, S. Stary (Univ. of Vienna, Vienna, Austria) for sharing materials, F. Hadacek for help with unpublished experiments, and M.-L. Kalda for photography. This work was supported by the Austrian Science Foundation FWF (grant P 13927), and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bachmair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlögelhofer, P., Garzón, M., Kerzendorfer, C. et al. Expression of the ubiquitin variant ubR48 decreases proteolytic activity in Arabidopsis and induces cell death. Planta 223, 684–697 (2006). https://doi.org/10.1007/s00425-005-0121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0121-z

Keywords

Navigation