Skip to main content
Log in

The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Expression of the Agrobacterium rhizogenes rolC gene in Panax ginseng callus cells results in formation of tumors that are capable to form roots. The selection of non-root forming tumor clusters yielded the embryogenic 2c3 callus line, which formed somatic embryos and shoots independently of external growth factors. Although the 2c3 somatic embryos developed through a typical embryogenesis process, they terminated prematurely and repeatedly formed adventitious shoot meristems and embryo-like structures. A part of the shoots and somatic embryos formed enlarged and fasciated meristems. This is the first indication of the rolC gene embryogenic effect and, to our knowledge, the first indication that a single gene of non-plant origin can induce somatic embryogenesis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

4-CPA:

4-chlorophenoxyacetic acid

SE:

Somatic embryos

References

  • Asaka I, Li I, Yoshikawa T, Hirotani M, Furuya T (1993) Embryoid formation by high temperature treatment from multiple shoots of Panax ginseng. Planta Med 59: 345–346

    Article  PubMed  CAS  Google Scholar 

  • Asaka I, Li I, Hirotani M, Asada Y, Yoshikawa T, Furuya T (1994) Mass production of ginseng (Panax ginseng) embryoids on media containing high concentrations of sugar. Planta Med 60: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Batygina TB (1999) Embryogenesis and morphogenesis of zygotic and somatic embryos. Russian J Plant Physiol 46: 774–788

    CAS  Google Scholar 

  • Bonhomme V, Laurain Mattar D, Fliniaux MA (2000) Effects of the rolC gene on hairy root: Induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63: 1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617–619

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP, Zhuravlev YN, Kozyrenko MM, Makhankov VV, Uvarova NI (1991) Content of dammarane-type glycosides in different callus cultures of Panax ginseng C.A. Meyer. Plant Resources (Rus.) 27: 94–100.

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Tchernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49: 1929–1934

    Article  CAS  Google Scholar 

  • Bulgakov VP, Lauve LS, Tchernoded GK, Khodakovskaya MV, Zhuravlev YN (2000) Chromosome variation in ginseng cells transformed with the rolC plant oncogene, Russian J. Genet 36: 150–156

    CAS  Google Scholar 

  • Bulgakov VP, Veselova MV, Tchernoded GK, Kiselev KV, Fedoreyev SA, Zhuravlev YN (2005) Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta 221: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1996) Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell Dev Biol-Plant 32: 86–90

    Article  Google Scholar 

  • Chang WC, Hsing Y (1980) In vitro flowering of embryoids derived from mature root callus of ginseng (Panax ginseng). Nature 284: 341–342

    Article  Google Scholar 

  • DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14: 420–426

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A. (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895

    PubMed  CAS  Google Scholar 

  • Faiss M, Strnad M, Redig P, Doležal K, Hanuš J, Van Onckelen H, Schmülling T (1996) Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10: 33–46

    Article  CAS  Google Scholar 

  • Fambrini M, Cionini G, Conti A, Michelotti V, Pugliesi C (2003) Origin and development in vitro of shoot buds and somatic embryos from intact roots of Helianthus annuus x H. tuberosus. Ann Bot 92: 145–151

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127: 803–816

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Hoshino Y, Masuda K, Oosawa K (2002) Explants of Ri-transformed hairy roots of spinach can develop embryogenic calli in the absence of gibberelic acid, an essential growth regulator for induction of embryogenesis from non-transformed roots. Plant Sci 163: 223–231

    Article  CAS  Google Scholar 

  • Kevers C, Gaspar T, Dommes J (2002) The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tiss Org Cult 70: 181–188

    Article  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristems is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130: 3163–3173

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102: 363–371

    PubMed  CAS  Google Scholar 

  • Nilsson O, Moritz T, Sundberg B, Sandberg G, Olsson O (1996) Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112: 493–502

    PubMed  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Kivela O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78: 129–136

    Article  CAS  Google Scholar 

  • Saito K, Yamazaki M, Murakoshi I (1992) Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J Nat Prod 55: 149–162

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T, Shell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629

    PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635–644

    Article  PubMed  CAS  Google Scholar 

  • Shoyama Y, Zhu XX, Nakai R, Shiraishi S, Kohda H (1997) Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of regenerated plantlets. Plant Cell Rep 16: 450–453

    CAS  Google Scholar 

  • Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899

    PubMed  CAS  Google Scholar 

  • Tirajoh A, Kyung TS, Punja ZK (1998) Somatic embryogenesis and plantlet regeneration in american ginseng (Panax quinquefolum L.) In Vitro Cell Dev Biol-Plant 34: 203–211

    Google Scholar 

  • Ueda M, Matsui K, Ishiguro S, Sano R, Wada T, Paponov I, Palme K, Okada K (2004) The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development 131: 2101–2111

    Article  PubMed  CAS  Google Scholar 

  • Zhuravlev YN, Getmanova ES, Muzarok TI, Bulgakov VP (1993) A method for Panax ginseng micropropagation. Patent 1824114 Russia, A 01 H 4/00

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30: 349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 03-04-48102 of the Russian Foundation for Basic Research, by a grant of Grant Program “Molecular and Cell Biology” of Russian Academy of Sciences and by grant NSH-2148.2003.4 of Grant Program “Leading Schools of Thought” of Russian Federation. The research described in this publication was made possible in part by a joint grant of CRDF and Ministry of Education of Russian Federation (VL-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Bulgakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorpenchenko, T.Y., Kiselev, K.V., Bulgakov, V.P. et al. The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 223, 457–467 (2006). https://doi.org/10.1007/s00425-005-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0102-2

Keywords

Navigation