Skip to main content
Log in

Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH +4 was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAT2:

Cytosolic aspartate aminotransferase

ASN :

Asparagine synthetase gene

Fd:

Ferredoxin

FNR:

Ferredoxin:NADP+ oxidoreductase

FR:

Far-red

FW:

Fresh weight

GDH :

NADH-glutamate dehydrogenase gene

GLN1(2) :

Cytosolic (chloroplastic) glutamine synthetase gene

GLT :

NADH-glutamate synthase gene

GLU1 (GLU2):

Ferredoxin-glutamate synthase gene 1 (2)

GOGAT:

Glutamate synthase

Lhcb :

Light-harvesting chlorophyll a/b-protein gene of photosystem II

NH +4 :

Ammonium

NII :

Nitrite reductase gene

NIR :

Nitrate reductase gene

NO 3 :

Nitrate

PPFD:

Photosynthetic photon flux density

PSI:

Photosystem I

R:

Red

uidA :

ß-Glucuronidase uidA (gusA) gene (GUS)

References

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CG, Tobin AK (2001) Compartmentation of metabolism within mitochondria and plastids. J Exp Bot 52:513–527

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CG, Hucklesby DP, Emes MJ (1993) Induction of ferredoxin NADP+ reductase and ferredoxin synthesis in pea root plastids during nitrate assimilation. Plant J 4:317–326

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limamis AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2011

    Article  PubMed  Google Scholar 

  • Bush DR (1999) Amino acid transport. In: Singh BK (ed) Plant amino acids. Biochemistry and Biotechnology. Inc, American Cyanamid Company, Marcel Dekker, Princeton, New Jersey, New York, Basel, Hong Kong, pp 305–318

  • Carvalho H, Lescure N, de Billy F, Chabaud M, Lima L, Salema R, Cullimore J (2000) Cellular expression and regulation of the Medicago truncatula cytosolic glutamine synthetase genes in root nodules. Plant Mol Biol 42:741–756

    Article  PubMed  CAS  Google Scholar 

  • Chaves Das Neves HJ, Vasconcelos AMP (1987) Capillary gas chromatography of amino acids, including asparagine and glutamine: sensitive gas chromatographic-mass spectrometric and selected ion monitoring gas chromatographic-mass spectrometric detection of the N,O(S)-it tert.-butyldimethylsilyl derivatives. J Chromatogr 392:249–258

    Article  PubMed  CAS  Google Scholar 

  • Chichkova S, Arellano J, Vance CP, Hernández G (2001) Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J Exp Bot 52:2079–2087

    PubMed  CAS  Google Scholar 

  • Cliquet J-B, Stewart GR (1993) Ammonia assimilation in Zea mays L. infected with a vascular-arbuscular mycorrhizal fungus Glomus fasciculatum. Plant Physiol 101:865–871

    PubMed  CAS  Google Scholar 

  • Coïc Y, Lesaint C (1971) Comment assurer une bonne nutrition en eau et en ions minéraux en holticulture. Hortic Fr 8:11–14

    Google Scholar 

  • Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes: implication for photorespiration and primary nitrogen assimilation. Plant Cell 10:741–752

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Arst HN Jr (1993) The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Méry S, Suzuki A, Valadier MH, Roux Y, Hirel B, Foyer CH (2000) Modulation of amino acid metabolism in transformed tobacco plants. Plant Soil 221:67–79

    Article  Google Scholar 

  • Ferrario-Méry S, Valadier MH, Godfroy N, Miallier D, Hirel B, Foyer CH, Suzuki A (2002) Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci 112:524–530

    Google Scholar 

  • Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T (1998) Organisation and structure of NADH-dependent glutamate synthase from rice plants. Biochim Biophys Acta 1387:298–308

    PubMed  CAS  Google Scholar 

  • Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T (2004) A post genomic characterization of Arabidopsis ferredoxin. Plant Physiol 134:255–264

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh BK (ed) Plant amino acids. Biochemistry and Biotechnology. Marcel Dekker, Inc., New York, Basel, Hong Kong, pp 49–109

  • Ishiyama K, Kojima S, Takahashi H, Hayakawa T, Yamaya T (2003) Cell type distinct accumulation of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH +4 . Plant Physiol Biochem 41:643–647

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) Modelling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L.). J Exp Bot 42:1091–1103

    Article  CAS  Google Scholar 

  • Kehoe DM, Degenhardt J, Winicov I, Tobin EM (1994) Two 10-bp regions are critical for phytochrome regulation of a Lemna gibba Lhcb gene promoter. Plant Cell 6:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Hirose S, Toki S, Akama K, Takaiwa F (1999) Molecular chracterization of a gene for alanine aminotransferase from rice (Oryza sativa). Plant Mol Biol 39:149–159

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lam H-M, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  PubMed  CAS  Google Scholar 

  • Lancien M, Martin M, Hsieh M-H, Leustek T, Goodman H, Coruzzi GM (2002) Arabidopsis glt-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J 29:347–358

    Article  PubMed  CAS  Google Scholar 

  • Lohaus G, Büker M, Hußmann M, Soave C, Heldt HW (1998) Transport of amino acids with special emphasis on the synthesis and transport of asparagine in Illinois low protein and Illinois high protein strains of maize. Planta 205:181–188

    Article  CAS  Google Scholar 

  • Miesak BH, Coruzzi GM (2002) Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol 129:650–660

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  PubMed  CAS  Google Scholar 

  • Murashige J, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 115:473–497

    Article  Google Scholar 

  • Nakano K, Suzuki1 T, Hayakawa T, Tomoyuki Yamaya Y (2000) Organ and cellular localization of asparagine synthetase in rice plants. Plant Cell Physiol 41:874–880

    Article  PubMed  CAS  Google Scholar 

  • Obata M, Sato T, Yamaya T (2000) High content of cytosolic glutamine synthetase does not accompany with a high activity of the enzyme in rice (Oryza sativa L.) leaves of indica cultivars during the leaf span. Physiol Plant 108:11–18

    Article  Google Scholar 

  • Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F (1987) Determination of the nucleotide-sequence for the glutamate synthase structural gene of Escherichia coli K-12. Gene 60:1–11

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Cavalho H, Sunkel C, Saleman HM (1992) Immunocytolocalisation of glutamine synthetase in mesophyll and phloem of leaves of Solanum tuberosum L. Protoplasma 167:66–73

    Article  CAS  Google Scholar 

  • Rochat C, Boutin JP (1989) Carbohydrates and nitrogenous compounds changes in the hull and in the seed during the pod development of pea. Plant Physiol Biochem 27:881–887

    CAS  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Fujii K, Sugiyama T (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36:789–797

    PubMed  CAS  Google Scholar 

  • Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Rothstein S (1997) Structure and regulation of ferredoxin-dependent glutamate synthase from Arabidopsis thaliana. Cloning of cDNA, expression in different tissues of wild-type and gltS mutants, and light induction. Eur J Biochem 243:708–718

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Rioual S, Godfroy N, Roux Y, Boutin JP, Rothstein S (2001) Regulation by light and metabolites of ferredoxin-dependent glutamate synthase in maize. Physiol Plant 112:524–530

    Article  PubMed  CAS  Google Scholar 

  • Thum KE, Shasha DE, Lejay LV, Coruzzi GM (2003) Light- and carbon-signaling pathways. Modeling circuits of interactions. Plant Physiol 132:440–452

    Article  PubMed  CAS  Google Scholar 

  • Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonia assimilation in rice and barley. J Exp Bot 52:591–604

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 71:4607–4611

    Google Scholar 

  • Vance CP, Miller SS, Gregerson RG, Samac DA, Robinson DL, Gantt JS (1995) Alfalfa NADH-dependent glutamate synthase: structure of the gene and importance in symbiotic N2 fixation. Plant J 8:345–358

    Article  PubMed  CAS  Google Scholar 

  • Williams BD, Wolf RR (1994) Determination of amino- and amide−15N glutamine enrichment with tertiary butyldimethylsilyl derivatives. Biol Mass Spectrom 23:682–688

    Article  PubMed  CAS  Google Scholar 

  • Ziegler C, Feraud M, Jouglet T, Viret L, Spampinato A, Paganelli V, Ben Hammouda M, Suzuki A (2003) Regulation of promoter activity of ferredoxin-dependent glutamate synthase. Plant Physiol Biochem 41:649–655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Steven Rothstein (Department of Molecular Biology and Genetics, University of Guelph, Canada) for his helpful comments in preparing the manuscript, and Dr. JP Boutin (Laboratoire de Biologie des Semences, INRA, Versailles, France) and Dr. M Reisdorf-Cren (Unité de Nutrition Azotée des Plantes, INRA, Versailles, France) for their help in amino acid analysis and 15N labeling experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Suzuki.

Additional information

The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feraud, M., Masclaux-Daubresse, C., Ferrario-Méry, S. et al. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.). Planta 222, 667–677 (2005). https://doi.org/10.1007/s00425-005-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0013-2

Keywords

Navigation