Skip to main content
Log in

Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant metallothioneins (MTs) are extremely diverse and are thought to be involved in metal homeostasis or detoxification. Thlaspi caerulescens is a model Zn/Cd hyperaccumulator and thus constitutes an ideal system to study the variability of these MTs. Two T. caerulescens cDNAs (accession: 665511; accession: 665515), that are highly homologous to type 1 and type 2 Arabidopsis thaliana MTs, have been isolated using a functional screen for plant cDNAs that confer Cd tolerance to yeast. However, TcMT1 has a much shorter N-terminal domain than that of A. thaliana and so lacks Cys motifs conserved through all the plant MTs classified as type 1. A systematic search in plant databases allowed the detection of MT-related sequences. Sixty-four percent fulfil the criteria for MT classification described in Cobbett and Goldsbrough (2002) and further extend our knowledge about other conserved residues that might play an important role in plant MT structure. In addition, 34% of the total MT-related sequences cannot be classified strictly as they display modifications in the conserved residues according to the current plant MTs’ classification. The significance of this variability in plant MT sequences is discussed. Functional complementation in yeast was used to assess whether these variations may alter the MTs’ function in T. caerulescens. Regulation of the expression of MTs in T. caerulescens was also investigated. TcMT1 and TcMT2 display higher expression in T. caerulescens than in A. thaliana. Moreover, their differential expression patterns in organs and in response to metal exposure, suggest that the two types of MTs may have diverse roles and functions in T. caerulescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159 (2):351–360

    Article  CAS  Google Scholar 

  • Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D (1995) Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J Biol Chem 270:26224–26231

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank Nucleic Acids Res 31:23–27

    Article  CAS  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569(1–3):140–148

    Article  PubMed  CAS  Google Scholar 

  • Binz PA, Kägi JHR (2001) Metallothionein. http://www.unizh.ch/~mtpage/MT.html

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  PubMed  CAS  Google Scholar 

  • Butt A, Mousley C, Morris K, Beynon J, Can C (1998) Differential expression of senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16:209–221

    Article  PubMed  CAS  Google Scholar 

  • Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir, regulation by ABA, osmoticum and metal ions. Plant Mol Biol 34:243–254

    Article  PubMed  CAS  Google Scholar 

  • Chen H-J, Hou W-C, Yang C-Y, Huang D-J, Liu J-S, Lin Y-H (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas). J Plant Physiol 160:547–555

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Clendennen S, May GD (1997) Differential gene expression in ripening banana fruit. Plant Physiol 115:463–469

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002). Phytochelatins and metallothioneins : roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167

    Article  CAS  Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoextraction. New Phytol 145:429–437

    Article  Google Scholar 

  • Foley RC, Singh KB (1994) Isolation of a Vicia faba metallothionein-like gene - expression in foliar trichomes. Plant Mol Biol 26:435–444

    Article  PubMed  CAS  Google Scholar 

  • Giordani T, Natali L, Maserti BE, Taddei S, Cavallini A (2000) Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol 123(4):1571–1582

    Article  PubMed  CAS  Google Scholar 

  • Guo W-J, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  PubMed  CAS  Google Scholar 

  • Kitashiba H, Iwai T, Toriyama K, Watanabe M, Hinata K (1996) Identification of genes expressed in the shoot apex of Brassica campestris during floral transition. Sex Plant Reprod 9:186–188

    Article  Google Scholar 

  • Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631

    Article  PubMed  CAS  Google Scholar 

  • Lane BG, Kajioka R, Kennedy TD (1987) The wheat germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  • Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein database. Bioinformatics 17:282–283

    Article  PubMed  CAS  Google Scholar 

  • Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum 40:130–136

    Article  CAS  Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231

    Article  Google Scholar 

  • Murphy A and Taiz L (1995) Comparison of metallothionein genes expression and non-protein thiols in ten Arabidopsis ecotypes. Plant Physiol 113:1293–1301

    Article  Google Scholar 

  • Murphy A, Zhou JM, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113:1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    Article  PubMed  CAS  Google Scholar 

  • Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accession from a wide geographical area. New Phytol 159(2):411–420

    Article  CAS  Google Scholar 

  • Pollard AJ, Baker AJM (1996) Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytol 132:113–118

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  • Reeves DR, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behaviour of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Rerie WG, Whietcross M, Higgins T (1991) Developmental and environmental regulation of pea legumin genes in transgenic tobacco. Mol Gen Genet 225:148–157

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Wilson JR, Turner JS (1996) Expression of type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+ -metallothionein deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ -metabolism. Plant Mol Biol 30:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Romero-Isart N, Vasak M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396

    Article  PubMed  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximénez-Embùn P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16

    Article  PubMed  CAS  Google Scholar 

  • Schafer HJ, Greiner S, Rausch T, HaagKerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for g-glutamylcysteine synthetase (g-ECS) and metallothionein (MT2). FEBS letters 404:216–220

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of 2b-type metallothionein gene. Plant Physiol 126:1519–1526

    Article  PubMed  CAS  Google Scholar 

  • Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  PubMed  CAS  Google Scholar 

  • Zhao F-J, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

N.R. and C.B. are indebted to the National Foundation (FNRS) for “Chargée de Recherche” and “Aspirant”, respectively. N.R. is indebted to the Belgian Science Policy. The authors thank P. Salis for his technical assistance and Y. Massin for her help in collecting the sequences from the database. The authors thank P. Meerts for the use of the ICP-OES. The authors are grateful to C. Krack and U. Krämer, who generated the zrc1cot1Δ mutant. The authors thank L. Moore for checking the manuscript and L. Bovet for helpful discussions. This research was supported by grants from the Belgian Programme on Interuniversity Poles (Science Policy Program V/13) and the European Research Network Metallome (HPRN-CT 2002-00243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy H. Roosens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roosens, N.H., Leplae, R., Bernard, C. et al. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222, 716–729 (2005). https://doi.org/10.1007/s00425-005-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0006-1

Keywords

Navigation