Skip to main content
Log in

Clumping and dispersal of chloroplasts in succulent plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plants have evolved various photoprotective mechanisms to mitigate photodamage. Here we report the diurnal movement of chloroplasts in the leaves of succulent crassulacean acid metabolism (CAM) plants under combined light and water stress. In leaves of water-stressed plants, the chloroplasts became densely clumped in one or sometimes two areas in the cytoplasm under light and dispersed during darkness. The chloroplast clumping resulted in leaf optical changes, with a decrease in absorptance and an increase in transmittance. The plant stress hormone abscisic acid induced chloroplast clumping in the leaf cells under light. We suggest that the marked chloroplast movement in these CAM plants is a photoprotective strategy used by the plants subjected to severe water stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–g
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6a–d

Similar content being viewed by others

Abbreviations

ABA :

Abscisic acid

CAM :

Crassulacean acid metabolism

References

  • Borland AM, Maxwell K, Griffiths H (2000) Ecophysiology of plants with crassulacean acid metabolism. In: Leegoods RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, pp 583–605

  • Britz SJ, Briggs WR (1987) Chloroplast movement and light transmission in Ulva: the sieve effect in a light-scattering system. Acta Physiol Plant 9:149–162

    Google Scholar 

  • Brugnoli E, Bjorkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. Photosynth Res 32:23–35

    CAS  Google Scholar 

  • Cornic G, Masacci A (1996) Leaf photosynthesis under drought stress. In: Barker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 347–366

  • Demming-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Drew EA (1979) Physiological aspects of primary production in seagrasses. Aquat Bot 7:139–150

    Article  CAS  Google Scholar 

  • Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428

    Article  CAS  Google Scholar 

  • Guralnick LJ, Edwards G, Ku MSB, Hockema B, Franceschi VR (2002) Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant, Portulaca grandiflora. Funct Plant Biol 29:763–773

    Article  CAS  Google Scholar 

  • Hartung W, Davies WJ (1991) Drought-induced changes in physiology and ABA. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. BIOS, Oxford, pp 63–79

  • Haupt W (1999) Chloroplast movement: from phenomenology to molecular biology. Prog Bot 60:1–36

    Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  CAS  PubMed  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Khurana JP, Kochhar A, Tyagi AK (1998) Photosensory perception and signal transduction in higher plants: molecular genetic analysis. Crit Rev Plant Sci 17:465–539

    Article  CAS  Google Scholar 

  • Kondo A, Nose A, Ueno O (1998) Leaf inner structure and immunogold localization of some key enzymes involved in carbon metabolism in CAM plants. J Exp Bot 49:1953–1961

    Article  CAS  Google Scholar 

  • Kondo A, Nose A, Yuasa H, Ueno O (2000) Species variation in the intracellular localization of pyruvate, Pi dikinase in leaves of crassulacean-acid-metabolism plants: an immunogold electron-microscope study. Planta 210:611–621

    Article  CAS  PubMed  Google Scholar 

  • Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5:337–342

    CAS  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    CAS  Google Scholar 

  • Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton (Austria) 40:65–82

  • Moss RA, Loomis WE (1952) Absorption spectra of leaves. I. The visible spectrum. Plant Physiol 27:370–391

    CAS  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revised: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    CAS  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Kadota A, Wada M (2003) CHLOROPLAST UNUSUAL POSITIONING is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  CAS  PubMed  Google Scholar 

  • Osmond B, Maxwell K, Popp M, Robinson S (1999) On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. In: Bryant JA, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. BIOS, Oxford, pp 183–200

  • Park Y-I, Chow WS, Anderson JA (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    CAS  PubMed  Google Scholar 

  • Rock CD (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  • Smith JAC, Lüttge U (1985) Day–night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163:272–282

    CAS  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Google Scholar 

  • Tlalka M, Fricker M (1999) The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J 20:461–473

    Article  CAS  PubMed  Google Scholar 

  • Vaughn KC, Hickok LG, Warne TR, Farrow AC (1990) Structural analysis and inheritance of a clumped-chloroplast mutant in the fern Ceratopteris. J Hered 81:146–151

    Google Scholar 

  • Vogelmann TC, Martin G (1993) The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant Cell Environ 16:65–72

    Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Weatherwax SC, Ong MS, Degenhardt J, Bray EA, Tobin EM (1996) The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol 111:363–370

    CAS  PubMed  Google Scholar 

  • Weatherwax SC, Williams SA, Tingay S, Tobin EM (1998) The phytochrome response of the Lemna gibba NPR1 gene is mediated primarily through changes in abscisic acid levels. Plant Physiol 116:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Zurzycki J (1961) The influence of chloroplast displacements on the optical properties of leaves. Acta Soc Bot Pol 30:503–527

    Google Scholar 

Download references

Acknowledgements

We thank Akiko Higuchi, Kyoko Hirasawa, and Atsushi Kato (Meijo University) for their assistance with some aspects of this study; Haruhiko Ito (Nagoya Municipal Industrial Research Institute) for technical assistance in the measurement of leaf optical properties; and Dr. Akihiro Nose (Saga University) for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, A., Kaikawa, J., Funaguma, T. et al. Clumping and dispersal of chloroplasts in succulent plants. Planta 219, 500–506 (2004). https://doi.org/10.1007/s00425-004-1252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1252-3

Keywords

Navigation