Skip to main content
Log in

Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–i
Fig. 3a–c
Fig. 4a–i
Fig. 5
Fig. 6a–k
Fig. 7a–c

Similar content being viewed by others

Abbreviations

ADF :

Actin-depolymerizing factor

CD :

Cytochalasin D

MF :

Microfilament

References

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Google Scholar 

  • Bartnik E, Sievers A (1988) In-vivo observation of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176:1–9

    Google Scholar 

  • Bartnik E, Hejnowicz Z, Sievers A (1990) Shuttle-like movements of Golgi vesicles in the tip of growing Chara rhizoids. Protoplasma 159:1–8

    Google Scholar 

  • Braun M (1996a) Immunolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191:1–8

    CAS  Google Scholar 

  • Braun M (1996b) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199:443–50

    CAS  PubMed  Google Scholar 

  • Braun M (2001) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Braun M (2002) Gravity perception requires statoliths settled on specific plasma-membrane areas in characean rhizoids and protonemata. Protoplasma 219:150–159

    PubMed  Google Scholar 

  • Braun M, Richter (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209:414–423

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63:289–298

    CAS  PubMed  Google Scholar 

  • Braun M, Wasteneys GO (1998) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205:39–50

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Wasteneys GO (2000) Actin in characean rhizoids and protonemata. Tip growth, gravity sensing and photomorphogenesis. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 237–258

  • Braun M, Baluška F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta 209:435–443

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Buchen B, Sievers A (2002) Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity. J Plant Growth Regul 21:137–145

    Article  CAS  PubMed  Google Scholar 

  • Buchen B, Braun M, Heinowicz Z, Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172:38–42

    CAS  PubMed  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H-M, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190

    Article  CAS  PubMed  Google Scholar 

  • de Win AHN, Pierson ES, Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 76:1648–1658

    PubMed  Google Scholar 

  • Didry D, Carlier M-F, Pantaloni D (1998) Synergy between actin depolymerizing factor cofilin and profilin in increasing actin filament turnover. J Biol Chem 273:25602-25611

    Article  CAS  PubMed  Google Scholar 

  • Dong C-H, Xia G-Y, Hong Y, Ramachandran S, Kost B, Chua N-H (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  Google Scholar 

  • Geitmann A, Emons AM (1999) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  Google Scholar 

  • Gibbon BC (2001) Actin monomer-binding proteins and the regulation of actin dynamics in plants. J Plant Growth Regul 20:103–112

    CAS  Google Scholar 

  • Gibbon BC, Zonia LE, Kovar DR, Hussey PJ, Staiger CJ (1998) Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10:981–993

    Article  CAS  PubMed  Google Scholar 

  • Glenney JR, Geisler N, Kaulfus P, Weber K (1981) Demonstration of at least two different actin-binding sites in villin, a calcium-regulated modulator of F-actin organization. J Biol Chem 256:8156–8161

    CAS  PubMed  Google Scholar 

  • Hawkins M, Pope B, MacIver SK, Weeds AG (1993) Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32:9985–9993

    CAS  PubMed  Google Scholar 

  • Hayden SDM, Miller PS, Brauweiler A, Bamburg JR (1993) Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32:9994–10004

    CAS  PubMed  Google Scholar 

  • Hejnowicz Z, Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108:117–137

    CAS  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    CAS  PubMed  Google Scholar 

  • Hodick D (1994) Negative gravitropism in Chara protonemata: a model integrating the opposite gravitropic responses of protonemata and rhizoids. Planta 195:43–49

    CAS  PubMed  Google Scholar 

  • Hodick D, Buchen B, Sievers A (1998) Statolith positioning by microfilaments in Chara rhizoids and protonemata. Adv Space Res 21:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Weeds AG, Hussey PJ (1997) The maize actin depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J 12:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Kang F, Purich DL, Southwick FS (1999) Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J Biol Chem 274:36963–36972

    Article  CAS  PubMed  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D, Chua N-H (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122:35–47

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR, Drobak BK, Staiger CJ (2000a) Maize profilin isoforms are functionally distinct. Plant Cell 12:583–598

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR, Weaver EA, McCurdy DW (2000b) AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24:625–636

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR, Gibbon BC, McCurdy DW, Staiger CJ (2001) Fluorescently labelled fimbrin decorates a dynamic actin filament network in live plant cells. Planta 213:390–395

    Article  CAS  PubMed  Google Scholar 

  • McCurdy DW, Dovar DR, Staiger CJ (2001) Actin and actin-binding proteins in higher plants. Protoplasma 215:89–104

    CAS  PubMed  Google Scholar 

  • McDaniel DP, Robertson RW (1998) γ-tubulin is a component of the Spitzenkörper and centrosomes in hyphal tip-cells of Allomyces macrogynus. Protoplasma 203:118–123

    CAS  Google Scholar 

  • Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HR (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271

    CAS  PubMed  Google Scholar 

  • Perelroizen I, Didry D, Christensen, H, Chua N-H, Carlier M-F (1996) Role of nucleotide exchange and hydrolysis in the function of profilin in actin assembly. J Biol Chem 271:12302–12309

    Article  CAS  PubMed  Google Scholar 

  • Pierson ES, Lichtscheidl IK, Derksen J (1990) Structure and behaviour of organelles in living pollen tubes of Lilium longiflorum. J Exp Bot 41:1461–1468

    Google Scholar 

  • Ressad F, Didry D, Egile C, Pantaloni D, Carlier MF (1999) Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J Biol Chem 274:20970–20976

    Article  CAS  PubMed  Google Scholar 

  • Sievers A, Kramer-Fischer M, Braun M, Buchen B (1991) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent. Bot Acta 104:103–109

    CAS  PubMed  Google Scholar 

  • Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Allwood EG, Khan S, Jiang CJ, MacIver SK (2001) Interaction of pollen-specific actin-depolymerizing factor with actin. Plant J 25:203–212

    Article  CAS  PubMed  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actin depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci 2:275–281

    Article  Google Scholar 

  • Tilney LG, Bonder EM, Coluccio LM, Mooseker MS (1983) Actin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J Cell Biol 97:112–124

    CAS  PubMed  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskel 36:323–338

    Article  CAS  PubMed  Google Scholar 

  • Vidali L, Hepler PK (2001) Actin and pollen tube growth. Protoplasma 215:64–76

    CAS  PubMed  Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T, Hepler PK (1999) The 135 kDa actin-bundling protein from Lilium longiflorum pollen is the plant homologue of villin. Protoplasma 209:283–291

    CAS  Google Scholar 

  • Yokota E, Shimmen T (2000) Characterization of native actin-binding proteins from pollen: myosin and the actin-bundling proteins, 135-ABP and 115-ABP. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 103–118

  • Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler PK, Shimmen T (2003) Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol 44:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Yonzawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem 260:14410–14412

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andreas Sievers and Brigitte Buchen for stimulating discussions and critical reading of the manuscript, Diedrik Menzel for giving us the opportunity to work with the confocal microscope, Simone Masberg for excellent technical assistance (all University of Bonn, Germany). We are grateful to Chris Staiger (Purdue University, USA) for kindly providing antibodies against ADFs, profilins and fimbrin, Luis Vidali (University of Massachussetts, USA) for the generous gift of the villin antibody and Frantisek Baluška (Universität Bonn, Germany) for sharing anti-HDEL. This work was financially supported by Deutsches Zentrum für Luft- und Raumfahrt (DLR) on behalf of the Bundesministerium für Bildung und Forschung (50WB9998). C.L. receives financial support from a Cusanus fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, M., Hauslage, J., Czogalla, A. et al. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids. Planta 219, 379–388 (2004). https://doi.org/10.1007/s00425-004-1235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1235-4

Keywords

Navigation