Skip to main content
Log in

Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic-anion transporters

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5a, b
Fig. 6
Fig. 7a–d
Fig. 8a–d

Similar content being viewed by others

Abbreviations

ACS:

Anion:Cation Symporter

GFP:

green fluorescent protein

Pi:

inorganic phosphate

References

  • Bar-Peled M, Raikhel NV (1997) Characterization of AtSEC12 and AtSAR1. proteins likely involved in endoplasmic reticulum and golgi transport. Plant Physiol 114:315–324

    Article  CAS  PubMed  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    CAS  PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  • Bröer S, Schuster A, Wagner CA, Bröer A, Forster I, Biber J, Murer H, Werner A, Lang F, Busch AE (1998) Chloride conductance and Pi transport are separate functions induced by the expression of NaPi-1 in Xenopus oocytes. J Membr Biol 164:71–77

    CAS  PubMed  Google Scholar 

  • Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G, Broer S, Biber J, Murer H, Lang F (1996) Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 93:5347–5351

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 6:735–43

    Article  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homologue of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    CAS  PubMed  Google Scholar 

  • Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–52

    Article  CAS  PubMed  Google Scholar 

  • Douce R, Joyard J (1982) Purification of the chloroplast. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 239–256

  • Eicks M, Maurino V, Knappe S, Flugge U-I, Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 128:512–522

    PubMed  Google Scholar 

  • Eastmond PJ, Dennis DT, Rawsthorne S (1997) Evidence that a malate/inorganic phosphate exchange translocator imports carbon across the leucoplast envelope for fatty acid synthesis in developing castor seed endosperm. Plant Physiol 114:851–856

    CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Ferro M, Salvi D, Rivière-Rolland H, Vermat T, Seigneuri-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    CAS  PubMed  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    CAS  PubMed  Google Scholar 

  • Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler RE, Flügge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462

    Article  CAS  PubMed  Google Scholar 

  • Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46

    PubMed  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    PubMed  Google Scholar 

  • Heiber T, Steinkamp T, Hinnah S, Schwarz M, Flügge UI, Weber A, Wagner R (1995) Ion channels in the chloroplast envelope membrane. Biochemistry 34:15906–15917

    CAS  PubMed  Google Scholar 

  • Heins L, Mentzel H, Schmid A, Benz R, Schmitz UK (1994) Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem 269:26402–26410

    CAS  PubMed  Google Scholar 

  • Howitz KT, McCarty RE (1985) Substrate specificity of the pea chloroplast glycolate transporter. Biochemistry 24:3645–3650

    CAS  Google Scholar 

  • Joyard J, Grossman A, Bartlett SG, Douce R, Chua NH (1982) Characterization of envelope membrane polypeptides from spinach chloroplasts. J Biol Chem 257:1095–1101

    CAS  PubMed  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flügge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10:105–117

    CAS  PubMed  Google Scholar 

  • Kim EJ, Zhen RG, Rea PA (1994) Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc Natl Acad Sci USA 91:6128–6132

    CAS  PubMed  Google Scholar 

  • Koo AJK, Ohlrogge JB (2002) The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiol 130:823–836

    Article  PubMed  Google Scholar 

  • Lee RY, Sawin ER, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167

    CAS  PubMed  Google Scholar 

  • Lübeck J, Soll J, Akita M, Nielsen E, Keegstra K (1996) Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J 15:4230–4238

    PubMed  Google Scholar 

  • Mourioux G, Douce R (1979) Transport du sulfate à travers la double membrane limitante, ou enveloppe, des chloroplastes d’épinard. Biochimie 61:1283–1292

    CAS  PubMed  Google Scholar 

  • Neilsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Neuhaus HE, Maass U (1996) Unidirectional transport of orthophosphate across the envelope of isolated cauliflower-bud amyloplasts. Planta 198:542–548

    CAS  Google Scholar 

  • Neuhaus HE, Wagner R (2000) Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta 1465:307–323

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus HE, Thom E, Möhlmann T, Steup M, Kampfenkel K (1997) Characterization of a novel ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J 11:73–82

    Article  CAS  PubMed  Google Scholar 

  • Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville SC, Thomashow M, Retzel E, Somerville CR (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255

    CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998). Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  Google Scholar 

  • Pohlmeyer K, Soll J, Steinkamp T, Hinnah S, Wagner R (1997) Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc Natl Acad Sci USA 94:9504–9509

    Article  CAS  PubMed  Google Scholar 

  • Renné P, Dressen U, Hebbeker U, Hille D, Flügge UI, Westhoff P, Weber APM (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35:316–331

    Article  PubMed  Google Scholar 

  • Schwarz M, Gross A, Steinkamp T, Flügge UI, Wagner R (1994) Ion channel properties of the reconstituted chloroplast triose phosphate/phosphate translocator. J Biol Chem 269:29481–29489

    CAS  PubMed  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tabata S, Miyake H, Sugiyama T (2002) Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Physiol 43:706–717

    Article  CAS  PubMed  Google Scholar 

  • Tranel PJ, Froehlich J, Goyal A, Keegstra K (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14:2436–2446

    CAS  PubMed  Google Scholar 

  • van den Wijngaard PWJ, Vredenberg WJ (1997) A 50-picosiemens anion channel of the chloroplast envelope is involved in chloroplast protein import. J Biol Chem 272:29430–29433

    Article  PubMed  Google Scholar 

  • Verheijen FW, Verbeek E, Aula N, Beerens CEMT, Havelaar AC, Joose M, Peltonen L, Aula P, Galjaard H, van der Spek PJ, Mancini GMS (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Biotechnol 23:462–465

    Article  CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    CAS  PubMed  Google Scholar 

  • Weber A, Menzlaff E, Arbinger B, Gutensohn M, Eckerskorn C, Flügge UI (1995) The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34:2621–2627

    CAS  PubMed  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebbeker U, Flügge UI (2000) Identification, purification and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12:787–801

    Article  CAS  PubMed  Google Scholar 

  • Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88:9608–9612

    CAS  PubMed  Google Scholar 

  • Werner A, Dehmelt L, Nalbant P (1998) Na+-dependent phosphate cotransporters: the NaPi protein families. J Exp Biol 201:3135–3142

    CAS  PubMed  Google Scholar 

  • Yu J, Woo KC (1988) Glutamine transport and the role of the glutamine translocator in chloroplasts. Plant Physiol 88:1048–1054

    CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. Roth and G. Menzel contributed equally to this work and are first co-authors. We thank M.J. Chrispeels (University of California-San Diego), P. Rea, (University of Pennsylvania), K. Keegstra (Michigan State University), U.K. Schmitz (Universität Hannover) and R. Leech (University of York) for providing antibodies against organelle proteins. We are also very grateful to A. Weber and I. Flügge (Universität zu Köln) for their help with the reconstitution of ANTR in artificial membranes. This work was funded, in part, with grants from the Fonds National Suisse de la Recherche Scientifique (Grant 3100-041903.94 and 31-61731.00), the Université de Lausanne and the Canton de Vaud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Poirier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, C., Menzel, G., Petétot, J.MC. et al. Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic-anion transporters. Planta 218, 406–416 (2004). https://doi.org/10.1007/s00425-003-1121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1121-5

Keywords

Navigation