Skip to main content
Log in

Decreased Hill reaction rates and slow turnover of transitory starch in the obligate shade plant Panax quinquefolius L. (American ginseng)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract.

To identify physiological processes that might limit photosynthesis in Panax quinquefolius L. (American ginseng) a comparison has been made with Panax ginseng C.A. Meyer (Korean ginseng), Pisum sativum L. (pea) and Spinacia oleracea L. (spinach). The quantum yield of oxygen evolution in intact leaves and isolated thylakoid membranes was found to be smaller in ginseng than in pea or spinach. However, the number of photosystem II (PSII) centers on a chlorophyll basis was found to be similar in all species. This suggests that ginseng thylakoid membranes possess relatively more inactive PSII centers than thylakoids of pea and spinach when grown under similar conditions. Unexpectedly, whole-chain electron transport from water to methyl viologen, and partial photosystem I reactions, demonstrated that electron transport rates to methyl viologen were anomalously low in P. quinquefolius and P. ginseng. Additionally, at elevated light intensities, intact leaves of P. quinquefolius were more susceptible to lipid peroxidation than pea leaves. In plants grown at a light intensity of 80 µmol photons m–2 s–1 the levels of fructose and starch were higher in both ginseng species than in pea or spinach. Significantly, the level of starch in P. quinquefolius was relatively constant throughout the entire 12 h/12 h light/dark cycle and remained high after an extended dark time of 48 h. In addition, P. quinquefolius had lower activities of α-amylase and β-amylase than P. ginseng, pea and Arabidopsis thaliana (L.) Heynh. The significance of the elevated levels of leaf starch in P. quinquefolius remains to be determined. However, the susceptibility of P. quinquefolius to photoinhibition may arise as a consequence of a reduced fraction of active PSII centers. This may result in the normal dissipative mechanisms in these plants becoming saturated at elevated, but moderate, light intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miskell, JA., Parmenter, G. & Eaton-Rye, J.J. Decreased Hill reaction rates and slow turnover of transitory starch in the obligate shade plant Panax quinquefolius L. (American ginseng). Planta 215, 969–979 (2002). https://doi.org/10.1007/s00425-002-0839-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-002-0839-9

Navigation