Skip to main content
Log in

Regulation of the CFTR channel by phosphorylation

  • Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract.

Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are regulated tightly by protein kinases and phosphatases. The regulatory domain of CFTR has about 20 potential sites for phosphorylation by protein kinases A (PKA) and C (PKC). The reason for this large number of sites is not known, however their conservation from fish to humans implies that they play important roles in vivo. PKA is an important activator, and its stimulation of CFTR is enhanced by PKC via mechanisms which are not fully understood. The physiological stimuli of CFTR are not known for some epithelia, and it appears likely that other serine/threonine and even tyrosine kinases also regulate CFTR in particular tissues. Phosphatases that deactivate CFTR have yet to be identified definitively at the molecular level, however CFTR is regulated by a membrane-bound form of protein phosphatase-2C (PP2C) in several cell types. Patch-clamp studies of channel rundown, co-immunoprecipitation, chemical cross-linking studies, and pull-down assays all indicate that CFTR and PP2C are closely associated within a stable regulatory complex. Understanding the regulation of CFTR by PP2C is a priority due to its potential as a target for pharmacotherapies in the treatment of cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, D., Evagelidis, A., Hanrahan, J.W. et al. Regulation of the CFTR channel by phosphorylation. Pflügers Arch - Eur J Physiol 443 (Suppl 1), S92–S96 (2001). https://doi.org/10.1007/s004240100652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240100652

Navigation