Skip to main content
Log in

Maternal nutrition and effects on offspring vascular function

  • Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Maternal nutrition during pregnancy may have profound effects on the developing fetus and impact risk for cardiovascular disease later in life. Here, we provide a narrative review on the impact of maternal diet during pregnancy on offspring vascular function. We review studies reporting effects of maternal micronutrient (folic acid, iron) intakes, high-fat diets, dietary energy restriction, and low protein intake on offspring endothelial function. We discuss the differences in study design and outcomes and potential underlying mechanisms contributing to the vascular phenotypes observed in the offspring. We further highlight key gaps in the literature and identify targets for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pan American Health Organization (2021) Cardiovascular disease burden in the Region of the Americas, 2000-2019. ENLACE data portal

  2. World Health Organization (2021) Cardiovascular Diseases (CVDs) Fact Sheet. World Health Organization, Geneva, Switzerland. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 9 Feb 2023

  3. Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, Grandner MA, Lavretsky H, Perak AM, Sharma G, Rosamond W (2022) Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 146:e18–e43

    Article  PubMed  Google Scholar 

  4. Steinberger J, Daniels SR, Hagberg N, Isasi CR, Kelly AS, Lloyd-Jones D, Pate RR, Pratt C, Shay CM, Towbin JA, Urbina E, Horn LVV, Zachariah JP (2016) Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation 134:e236–e255

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Godo S, Shimokawa H (2017) Endothelial functions. Arterioscler Thromb Vasc Biol 37:e108–e114

    Article  CAS  PubMed  Google Scholar 

  7. Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T (2017) Targeting vascular (endothelial) dysfunction. Br J Pharmacol 174:1591–1619

    Article  CAS  PubMed  Google Scholar 

  8. Widlansky ME, Gokce N, Keaney JJF, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    Article  CAS  PubMed  Google Scholar 

  9. Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC (2021) Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 321:H77–H111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    Article  CAS  PubMed  Google Scholar 

  11. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(23_suppl_1):III-27

    Article  Google Scholar 

  12. Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease. Circulation 113:1708–1714

    Article  PubMed  Google Scholar 

  13. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  Google Scholar 

  14. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot P-A, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT (2019) Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 15:87–108

    Article  PubMed  Google Scholar 

  15. Vásquez-Vivar J, Kalyanaraman B, Martásek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9920–9925

    Article  Google Scholar 

  16. Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25:27–42

    Article  CAS  PubMed  Google Scholar 

  17. Wilson RD, O'Connor DL (2022) Guideline No. 427: Folic acid and multivitamin supplementation for prevention of folic acid-sensitive congenital anomalies. J Obstet Gynaecol Can 44:707–719

    Article  PubMed  Google Scholar 

  18. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357:135–142

    Article  PubMed  Google Scholar 

  19. Colapinto CK, O'Connor DL, Tremblay MS (2011) Folate status of the population in the Canadian Health Measures Survey. CMAJ 183:E100–E106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82:442–450

    Article  CAS  PubMed  Google Scholar 

  21. Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, Fisher KD, Mulinare J, Osterloh JD (2007) Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutrition 86:718–727

    Article  CAS  Google Scholar 

  22. Selhub J (1999) Homocysteine metabolism. Ann Rev Nutr 19:217–246

    Article  CAS  Google Scholar 

  23. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962

    Article  CAS  PubMed  Google Scholar 

  24. Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, Heistad DD, Faraci FM, Lentz SR (2001) Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ Res 88:1203–1209

    Article  CAS  PubMed  Google Scholar 

  25. Dayal S, Devlin AM, McCaw RB, Liu ML, Arning E, Bottiglieri T, Shane B, Faraci FM, Lentz SR (2005) Cerebral vascular dysfunction in methionine synthase-deficient mice. Circulation 112:737–744

    Article  CAS  PubMed  Google Scholar 

  26. Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103:2624–2629

    Article  CAS  PubMed  Google Scholar 

  27. Lentz SR, Erger RA, Dayal S, Maeda N, Malinow MR, Heistad DD, Faraci FM (2000) Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta-synthase-deficient mice. Am J Physiol Heart Circ Physiol 279:H970–H975

    Article  CAS  PubMed  Google Scholar 

  28. Faraci FM (2003) Hyperhomocysteinemia: a million ways to lose control. Arterioscler Thromb Vasc Biol 23:371–373

    Article  CAS  PubMed  Google Scholar 

  29. Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C, Pillai R, Ratnatunga C, Tousoulis D, Stefanadis C, Refsum H, Channon KM (2009) MTHFR 677 C>T Polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 119:2507–2515

    Article  CAS  PubMed  Google Scholar 

  30. Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, Leeson P, Neubauer S, Ratnatunga C, Pillai R, Refsum H, Channon KM (2006) 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114:1193–1201

    Article  CAS  PubMed  Google Scholar 

  31. Aleliunas RE, Aljaadi AM, Laher I, Glier MB, Green TJ, Murphy M, Miller JW, Devlin AM (2016) Folic acid supplementation of female mice, with or without vitamin B-12, before and during pregnancy and lactation programs adiposity and vascular health in adult male offspring. J Nutr 146:688–696

    Article  Google Scholar 

  32. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  CAS  PubMed  Google Scholar 

  34. Wilson CP, McNulty H, Ward M, Strain JJ, Trouton TG, Hoeft BA, Weber P, Roos FF, Horigan G, McAnena L, Scott JM (2013) Blood pressure in treated hypertensive individuals with the MTHFR 677TT genotype is Responsive to intervention with riboflavin. Hypertension 61:1302–1308

    Article  CAS  PubMed  Google Scholar 

  35. Chirinos JA, Segers P, Hughes T, Townsend R (2019) Large-artery stiffness in health and disease. J Am Coll Cardiol 74:1237–1263

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aljaadi AM, How RE, Loh SP, Hunt SE, Karakochuk CD, Barr SI, McAnena L, Ward M, McNulty H, Khor GL, Devlin AM, Green TJ (2019) Suboptimal biochemical riboflavin status is associated with lower hemoglobin and higher rates of anemia in a sample of Canadian and Malaysian women of reproductive age. J Nutr 149:1952–1959

    Article  PubMed  Google Scholar 

  37. dos Santos L, Bertoli SR, Ávila RA, Marques VB (2022) Iron overload, oxidative stress and vascular dysfunction: evidences from clinical studies and animal models. Biochim Biophys Acta Gen Subj 1866:130172

    Article  PubMed  Google Scholar 

  38. World Health Organization (2018) Antenatal iron supplementation. Nutrition Landscape Information System (NLiS). https://www.who.int/data/nutrition/nlis/info/antenatal-iron-supplementation. Accessed 9 Feb 2023

  39. Roberts H, Bourque SL, Renaud SJ (2020) Maternal iron homeostasis: effect on placental development and function. Reproduction 160:R65–R78

    Article  PubMed  Google Scholar 

  40. Bourque SL, Komolova M, Nakatsu K, Adams MA (2008) Long-term circulatory consequences of perinatal iron deficiency in male Wistar rats. Hypertension 51:154–159

    Article  CAS  PubMed  Google Scholar 

  41. Crowe C, Dandekar P, Fox M, Dhingra K, Bennet L, Hanson MA (1995) The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 488:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gambling L, Dunford S, Wallace DI, Zuur G, Solanky N, Srai SKS, McArdle (2003) Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol 552:603-610.

  43. Lewis RM, Forhead AJ, Petry CJ, Ozanne SE, Hales NC (2002) Long-term programming of blood pressure by maternal dietary iron restriction in the rat. Br J Nutr 88:283–290

    Article  CAS  PubMed  Google Scholar 

  44. Lewis RM, Petry CJ, Ozanne SE, Hales CN (2001) Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metab Clin Exp 50:562–567

    Article  CAS  PubMed  Google Scholar 

  45. Woodman AG, Noble RMN, Panahi S, Gragasin FS, Bourque SL (2019) Perinatal iron deficiency combined with a high salt diet in adulthood causes sex-dependent vascular dysfunction in rats. J Physiol 597:4715–4728

    Article  CAS  PubMed  Google Scholar 

  46. Boonpattrawong NP, Albidi S, Tai DC, Aleliunas RE, Bernatchez P, Miller J, Laher I, Devlin AM (2020) Exercise during pregnancy mitigates the adverse effects of maternal obesity on adult male offspring vascular function and alters one carbon metabolism. Physiol Rep 8:e14582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan LL, Lindsley SR, Comstock SM, Takahashi DL, Evans AE, He G-W, Thornburg KL, Grove KL (2013) Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Intl J Obes 37:254–262

    Article  CAS  Google Scholar 

  48. Payen C, Guillot A, Paillat L, Fothi A, Dib A, Bourreau J, Schmitt F, Loufrani L, Aranyi T, Henrion D, Munier M, Fassot C (2021) Pathophysiological adaptations of resistance arteries in rat offspring exposed in utero to maternal obesity is associated with sex-specific epigenetic alterations. Intl J Obes 45:1074–1085

    Article  CAS  Google Scholar 

  49. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJ, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh P, Bitsanis D, Ghebremeskel K, Crawford MA, Poston L (2001) Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol 533:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray C, Harrison CJ, Segovia SA, Reynolds CM, Vickers MH (2015) Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels. Sci Rep 5:9753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khan I, Dekou V, Hanson M, Poston L, Taylor P (2004) Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 110:1097–1102

    Article  CAS  PubMed  Google Scholar 

  53. Koukkou E, Ghosh P, Lowy C, Poston L (1998) Offspring of normal and diabetic rats fed saturated fat in pregnancy demonstrate vascular dysfunction. Circulation 98:2899–2904

    Article  CAS  PubMed  Google Scholar 

  54. Taylor PD, Khan IY, Hanson MA, Poston L (2004) Impaired EDHF-mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy. J Physiol 558:943–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, Taylor PD (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 288:R127–R133

    Article  CAS  PubMed  Google Scholar 

  56. Miyawaki D, Yamada H, Saburi M, Wada N, Motoyama S, Sugimoto T, Kubota H, Wakana N, Kami D, Ogata T, Matoba S (2022) Maternal high-fat diet promotes calcified atherosclerotic plaque formation in adult offspring by enhancing transformation of VSMCs to osteochondrocytic-like phenotype. Heliyon 8:e10644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bleker LS, de Rooij SR, Painter RC, Ravelli AC, Roseboom TJ (2021) Cohort profile: the Dutch famine birth cohort (DFBC)— a prospective birth cohort study in the Netherlands. BMJ Open 11:e042078

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roseboom TJ, van der Meulen JHP, Osmond C, Barker DJP, Ravelli ACJ, Schroeder-Tanka JM, van Montfrans GA, Michels RPJ, Bleker OP (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 84:595–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Franco MCP, Arruda RMMP, Dantas APV, Kawamoto EM, Fortes ZB, Scavone C, Carvalho MHC, Tostes RCA, Nigro D (2002) Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 56:145–153

    Article  CAS  PubMed  Google Scholar 

  60. Khan OA, Torrens C, Noakes DE, Poston L, Hanson MA, Green LR, Ohri SK (2005) Effects of pre-natal and early post-natal undernutrition on adult internal thoracic artery function. Eur J Cardiothorac Surg 28:811–815

    Article  PubMed  Google Scholar 

  61. Nishina H, Green LR, McGarrigle HHG, Noakes DE, Poston L, Hanson MA (2003) Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid-gestation fetal sheep. J Phsyiol 553:637–647

    Article  CAS  Google Scholar 

  62. Ozaki T, Hawkins P, Nishina H, Steyn C, Poston L, Hanson MA (2000) Effects of undernutrition in early pregnancy on systemic small artery function in late-gestation fetal sheep. Am J Obstet Gynecol 183:1301–1307

    Article  CAS  PubMed  Google Scholar 

  63. Ozaki T, Nishina H, Hanson MA, Poston L (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Torrens C, Snelling TH, Chau R, Shanmuganathan M, Cleal JK, Poore KR, Noakes DE, Poston L, Hanson MA, Green LR (2009) Effects of pre- and periconceptional undernutrition on arterial function in adult female sheep are vascular bed dependent. Exp Physiol 94:1024–1033

    Article  CAS  PubMed  Google Scholar 

  65. Brawley L, Itoh S, Torrens C, Barker A, Bertram C, Poston L, Hanson M (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 54:83–90

    Article  CAS  PubMed  Google Scholar 

  66. Chisaka T, Mogi M, Nakaoka H, Kan-no H, Tsukuda K, Wang X-L, Bai H-Y, Shan B-S, Kukida M, Iwanami J, Higaki T, Ishii E-i, Horiuchi M (2015) Low-protein diet-induced fetal growth restriction leads to exaggerated proliferative response to vascular injury in postnatal life. Am J Hypertens 29:54–62

    Article  PubMed  Google Scholar 

  67. Sathishkumar K, Elkins R, Yallampalli U, Yallampalli C (2009) Protein restriction during pregnancy induces hypertension and impairs endothelium-dependent vascular function in adult female offspring. J Vasc Res 46:229–239

    Article  PubMed  Google Scholar 

  68. Sato S, Mukai Y, Norikura T (2011) Maternal low-protein diet suppresses vascular and renal endothelial nitric oxide synthase phosphorylation in rat offspring independent of a postnatal fructose diet. J Dev Orig Health Dis 2:168–175

    Article  CAS  PubMed  Google Scholar 

  69. Watkins AJ, Lucas ES, Torrens C, Cleal JK, Green L, Osmond C, Eckert JJ, Gray WP, Hanson MA, Fleming TP (2010) Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin–angiotensin-system homeostasis in the offspring. Br J Nutr 103:1762–1770

    Article  CAS  PubMed  Google Scholar 

  70. Franco MCP, Dantas APV, Akamine EH, Kawamoto EM, Fortes ZB, Scavone C, Tostes RCA, Carvalho MHC, Nigro D (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharm 40:501–509

    Article  CAS  Google Scholar 

  71. Arnal J-F, Fontaine C, Billon-Galés A, Favre J, Laurell H, Lenfant F, Gourdy P (2010) Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol 30:1506–1512

    Article  CAS  PubMed  Google Scholar 

  72. Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. In: Wu G (ed) Amino acids in nutrition and health: amino acids in gene expression, metabolic regulation, and exercising performance. Springer International Publishing, Cham, pp 167–187

    Chapter  Google Scholar 

  73. Watkins AJ, Ursell E, Panton R, Papenbrock T, Hollis L, Cunningham C, Wilkins A, Perry VH, Sheth B, Kwong WY, Eckert JJ, Wild AE, Hanson MA, Osmond C, Fleming TP (2008) Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol Reprod 78:299–306

    Article  CAS  PubMed  Google Scholar 

  74. Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA, Poston L, Hanson MA (2006) Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension 47:982–987

    Article  CAS  PubMed  Google Scholar 

  75. Teichert A-M, Scott JA, Robb GB, Zhou Y-Q, Zhu S-N, Lem M, Keightley A, Steer BM, Schuh AC, Adamson SL, Cybulsky MI, Marsden PA (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis. Circ Res 103:24–33

    Article  CAS  PubMed  Google Scholar 

  76. Block T, El-Osta A (2017) Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis 266:31–40

    Article  CAS  PubMed  Google Scholar 

  77. van Otterdijk SD, Michels KB (2016) Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J 30:2457–2465

    Article  PubMed  Google Scholar 

  78. Ku KH, Subramaniam N, Marsden PA (2019) Epigenetic determinants of flow-mediated vascular endothelial gene expression. Hypertension 74:467–476

    Article  CAS  PubMed  Google Scholar 

  79. Chen F, Cao K, Zhang H, Yu H, Liu Y, Xue Q (2021) Maternal high-fat diet increases vascular contractility in adult offspring in a sex-dependent manner. Hypertens Res 44:36–46

    Article  PubMed  Google Scholar 

  80. Kawai T, Forrester SJ, O'Brien S, Baggett A, Rizzo V, Eguchi S (2017) AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 125:4–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khorram O, Han G, Bagherpour R, Magee TR, Desai M, Ross MG, Chaudhri AA, Toloubeydokhti T, Pearce WJ (2010) Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am J Physiol Regul Integr Comp Physiol 298:R1366–R1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kereliuk SM, Dolinsky VW (2022) Recent experimental studies of maternal obesity, diabetes during pregnancy and the developmental origins of cardiovascular disease. Intl J Mol Sci 23:4467

    Article  Google Scholar 

  83. Xu Y, Williams SJ, O’Brien D, Davidge ST (2006) Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring. FASEB J 20:1251–1253

    Article  CAS  PubMed  Google Scholar 

Download references

Data availability

Not applicable.

Funding

This work is supported by funding from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Council of Canada. AMD is supported by an Investigator Grant from BC Children’s Hospital Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

TAR and AMD wrote the first draft of the manuscript. TAR prepared the figures. TAR, NB, IL, and AMD edited the manuscript and figures. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Angela M. Devlin.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, T.A., Boonpattrawong, N., Laher, I. et al. Maternal nutrition and effects on offspring vascular function. Pflugers Arch - Eur J Physiol 475, 877–887 (2023). https://doi.org/10.1007/s00424-023-02807-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02807-x

Keywords

Navigation