Skip to main content

Advertisement

Log in

Editing of the myosin phosphatase regulatory subunit suppresses angiotensin II induced hypertension via sensitization to nitric oxide mediated vasodilation

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Alternative splicing of exon 24 (E24) of the myosin phosphatase regulatory subunit (Mypt1) tunes smooth muscle sensitivity to NO/cGMP-mediated vasorelaxation and thereby controls blood pressure (BP) in otherwise normal mice. This occurs via the toggling in or out of a C-terminal leucine zipper (LZ) motif required for hetero-dimerization with and activation by cGMP-dependent protein kinase cGK1α. Here we tested the hypothesis that editing (deletion) of E24, by shifting to the LZ positive isoform of Mypt1, would suppress the hypertensive response to angiotensin II (AngII). To test this, mice underwent tamoxifen-inducible and smooth muscle-specific deletion of E24 (E24 cKO) at age 6 weeks followed by a chronic slow-pressor dose of AngII (400 ng/kg/min) plus additional stressors. E24 cKO suppressed the hypertensive response to AngII alone or with the addition of a high salt diet. This effect was not a function of altered salt balance as there were no differences in intake or renal excretion of sodium. This effect was NO dependent as L-NAME in the drinking water caused an exaggerated hypertensive response in the E24cKO mice. E24cKO mouse mesenteric arteries were more sensitive to DEA/NO-induced vasorelaxation and less responsive to AngII- and α-adrenergic-induced vasoconstriction at baseline. Only the latter two effects were still present after 2 weeks of chronic AngII treatment. We conclude that editing of Mypt1 E24, by shifting the expression of naturally occurring isoforms and sensitizing to NO-mediated vasodilation, could be a novel approach to the treatment of human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS (2019) Heart Disease and Stroke Statistics 2019 Update: A Report From the American Heart Association. Circulation 139:e56–e528

    Article  Google Scholar 

  2. Brooks AK, Gaj T (2018) Innovations in CRISPR technology. Curr Opin Biotechnol 52:95–101

    Article  CAS  Google Scholar 

  3. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68:476–532

    Article  CAS  Google Scholar 

  4. Dippold RP, Fisher SA (2014) Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 21:239–248

    Article  CAS  Google Scholar 

  5. Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM, Nomura A, Haas M, Aragam K, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gormley P, Palotie A, Stitziel NO, Gupta N, Danesh J, Saleheen D, Gabriel S, Kathiresan S (2018) Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137:222–232

    Article  CAS  Google Scholar 

  6. Eto M, Kitazawa T (2017) Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res 53:1–19

    Article  CAS  Google Scholar 

  7. Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42A:169–187

    Article  CAS  Google Scholar 

  8. Fisher SA (2017) Smooth muscle phenotypic diversity: effect on vascular function and drug responses. Adv Pharmacol 78:383–415

    Article  CAS  Google Scholar 

  9. Grassie ME, Moffat LD, Walsh MP, MacDonald JA (2011) The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1delta. Arch Biochem Biophys 510:147–159

    Article  CAS  Google Scholar 

  10. Hartshorne DJ, Ito M, Erdodi F (2004) Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem 279:37211–37214

    Article  CAS  Google Scholar 

  11. Huang QQ, Fisher SA, Brozovich FV (2004) Unzipping the role of myosin light chain phosphatase in smooth muscle cell relaxation. J Biol Chem 279:597–603

    Article  CAS  Google Scholar 

  12. Huo K-G, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino Julio C, Barhoumi T, Ouerd S, Coelho Suellen C, Sinnett D, Paradis P, Schiffrin Ernesto L (2019) miR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury. Hypertension 73:1007–1017

    Article  CAS  Google Scholar 

  13. Kawada N, Imai E, Karber A, Welch WJ, Wilcox CS (2002) A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol 13:2860–2868

    Article  CAS  Google Scholar 

  14. Khatri JJ, Joyce KM, Brozovich FV, Fisher SA (2001) Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation. J Biol Chem 276:37250–37257

    Article  CAS  Google Scholar 

  15. Kim D, Aizawa T, Wei H, Pi X, Rybalkin SD, Berk BC, Yan C (2005) Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: a mechanism by which angiotensin II antagonizes cGMP signaling. JMCC 38:175–184

    CAS  Google Scholar 

  16. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM (2019) Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73:e87–e120

    Article  CAS  Google Scholar 

  17. Li G, Wang M, Caulk AW, Cilfone NA, Gujja S, Qin L, Chen P-Y, Chen Z, Yousef S, Jiao Y, He C, Jiang B, Korneva A, Bersi MR, Wang G, Liu X, Mehta S, Geirsson A, Gulcher JR, Chittenden TW, Simons M, Humphrey JD, Tellides G (2020) Chronic mTOR activation induces a degradative smooth muscle cell phenotype. J Clin Invest 130:1233–1251

    Article  CAS  Google Scholar 

  18. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14:623–641

    Article  CAS  Google Scholar 

  19. Marsh N, Marsh A (2000) A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 27:313–319

    Article  CAS  Google Scholar 

  20. Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, Jamnongjit M, Aronovitz M, Baur W, Ohtani K, Wilkerson MK, Bonev AD, Nelson MT, Karas RH, Mendelsohn ME (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci 105:6702–6707

    Article  CAS  Google Scholar 

  21. Molla KA, Yang Y (2019) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–1142

    Article  CAS  Google Scholar 

  22. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65

    Article  Google Scholar 

  23. Mukohda M, Fang S, Wu J, Agbor LN, Nair AR, Ibeawuchi S-RC HC, Liu X, Lu K-T, Guo D-F, Davis DR, Keen HL, Quelle FW, Sigmund CD (2019) RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. J Clin Invest 129:2318–2332

    Article  Google Scholar 

  24. Pfeffer MA, McMurray JJ (2016) Lessons in uncertainty and humility - clinical trials involving hypertension. N Engl J Med 375:1756–1766

    Article  Google Scholar 

  25. Reho JJ, Fisher SA (2015) The stress of maternal separation causes misprogramming in the postnatal maturation of rat resistance arteries. Am J Physiol Heart Circ Physiol 309:H1468–H1478

    Article  CAS  Google Scholar 

  26. Reho JJ, Kenchegowda D, Asico LD, Fisher SA (2016) A splice variant of the myosin phosphatase regulatory subunit tunes arterial reactivity and suppresses response to salt loading. Am J Physiol Heart Circ Physiol 310:15

    Article  Google Scholar 

  27. Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjölund J, Bakker ENTP, Swärd K (2017) Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep 7:1334

    Article  Google Scholar 

  28. Sparks MA, Stegbauer J, Chen D, Gomez JA, Griffiths RC, Azad HA, Herrera M, Gurley SB, Coffman TM (2015) Vascular type 1A angiotensin II receptors control BP by regulating renal blood flow and urinary sodium excretion. J Am Soc Nephrol 26:2953–2962

    Article  CAS  Google Scholar 

  29. Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    Article  CAS  Google Scholar 

  30. The Spint Investigators (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116

    Article  Google Scholar 

  31. Thieme M, Sivritas SH, Mergia E, Potthoff SA, Yang G, Hering L, Grave K, Hoch H, Rump LC, Stegbauer J (2017) Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. Am J Physiol Ren Physiol 312:F474–F481

    Article  CAS  Google Scholar 

  32. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 138:e484–e594

    PubMed  Google Scholar 

  33. Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E, Lemmer B, Schutz G, Gutkind S, Offermanns S (2008) G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 14:64–68

    Article  CAS  Google Scholar 

  34. Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, Brauer M, Kutty VR, Gupta R, Wielgosz A, AlHabib KF, Dans A, Lopez-Jaramillo P, Avezum A, Lanas F, Oguz A, Kruger IM, Diaz R, Yusoff K, Mony P, Chifamba J, Yeates K, Kelishadi R, Yusufali A, Khatib R, Rahman O, Zatonska K, Iqbal R, Wei L, Bo H, Rosengren A, Kaur M, Mohan V, Lear SA, Teo KK, Leong D, O'Donnell M, McKee M, Dagenais G (2020) Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395: 795–808

  35. Zheng X, Reho JJ, Wirth B, Fisher SA (2015) TRA2beta controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol 308:C289–C296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Owen Woodward for use of the Easylyte PLUS electrolyte analyzer, Paul A. Welling for the use of the metabolic cages, and the University of Maryland Cardiovascular Physiology Phenotyping Core for help with mouse telemetry and echocardiography.

Funding

This work was supported by NIH R01 HL142971-A1 and VA MERIT award BX004443 to SAF and NIH supplemental award 3R01HL130750-03S1 to JU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Fisher.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htet, M., Ursitti, J.A., Chen, L. et al. Editing of the myosin phosphatase regulatory subunit suppresses angiotensin II induced hypertension via sensitization to nitric oxide mediated vasodilation. Pflugers Arch - Eur J Physiol 473, 611–622 (2021). https://doi.org/10.1007/s00424-020-02488-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02488-w

Keywords

Navigation