Skip to main content

Advertisement

Log in

A look at the smelly side of physiology: transport of short chain fatty acids

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Fermentative organs such as the caecum, the colon, and the rumen have evolved to produce and absorb energy rich short chain fatty acids (SCFA) from otherwise indigestible substrates. Classical models postulate diffusional uptake of the undissociated acid (HSCFA). However, in net terms, a major part of SCFA absorption occurs with uptake of Na+ and resembles classical, coupled electroneutral NaCl transport. Considerable evidence suggests that the anion transporting proteins expressed by epithelia of fermentative organs are poorly selective and that their main function may be to transport acetate, propionate, butyrate and HCO3 as the physiologically relevant anions. Apical uptake of SCFA thus involves non-saturable diffusion of the undissociated acid (HSCFA), SCFA/HCO3 exchange via DRA (SLC26A3) and/or SCFA-H+ symport (MCT1, SLC16A1). All mechanisms lead to cytosolic acidification with stimulation of Na+/H+ exchange via NHE (SLC9A2/3). Basolaterally, Na+ leaves via the Na+/K+-ATPase with recirculation of K+. Na+ efflux drives the transport of SCFA anions through volume-regulated anion channels, such as maxi-anion channels (possibly SLCO2A1), LRRC8, anoctamins, or uncoupled exchangers. When luminal buffering is inadequate, basolateral efflux will increasingly involve SCFA/ HCO3 exchange (AE1/2, SCL4A1/2), or efflux of SCFA with H+ (MCT1/4, SLC16A1/3). Furthermore, protons can be basolaterally removed by NHE1 (SCL9A1) or NBCe1 (SLC4A4). The purpose of these transport proteins is to maximize the amount of SCFA transported from the tightly buffered ingesta while minimizing acid transport through the epithelium. As known from the rumen for many decades, a disturbance of these processes is likely to cause severe colonic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al Jassim RA, Andrews FM (2009) The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. Vet Clin North Am Equine Pract 25:199–215. https://doi.org/10.1016/j.cveq.2009.04.005

    Article  PubMed  Google Scholar 

  2. Albrecht E, Kolisek M, Viergutz T, Zitnan R, Schweigel M (2008) Molecular identification, immunolocalization, and functional activity of a vacuolar-type H(+)-ATPase in bovine rumen epithelium. J Comp Physiol B Biochem Syst Environ Physiol 178:285–295. https://doi.org/10.1007/s00360-007-0221-0

    Article  CAS  Google Scholar 

  3. Ali O, Shen Z, Tietjen U, Martens H (2006) Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions. J Comp Physiol B 176:477–487

    Article  CAS  PubMed  Google Scholar 

  4. Allen MS (1997) Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci 80:1447–1462

    Article  CAS  PubMed  Google Scholar 

  5. Alper SL (2009) Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 212:1672–1683. https://doi.org/10.1242/jeb.029454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Asp Med 34:494–515. https://doi.org/10.1016/j.mam.2012.07.009

    Article  CAS  Google Scholar 

  7. Amasheh S, Milatz S, Krug SM, Markov AG, Günzel D, Amasheh M, Fromm M (2009) Tight junction proteins as channel formers and barrier builders. Ann N Y Acad Sci 1165:211–219. https://doi.org/10.1111/j.1749-6632.2009.04439.x

    Article  CAS  PubMed  Google Scholar 

  8. Argenzio RA, Southworth M, Lowe JE, Stevens CE (1977) Interrelationship of Na, HCO3, and volatile fatty acid transport by equine large intestine. Am J Phys 233:E469–E478

    CAS  Google Scholar 

  9. Argenzio RA, Southworth M, Stevens CE (1974) Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Phys 226:1043–1050

    CAS  Google Scholar 

  10. Aschenbach JR, Bilk S, Tadesse G, Stumpff F, Gäbel G (2009) Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol 296:G1098–G1107. https://doi.org/10.1152/ajpgi.90442.2008

    Article  CAS  PubMed  Google Scholar 

  11. Aschenbach JR, Penner GB, Stumpff F, Gäbel G (2011) Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci 89:1092–1107. https://doi.org/10.2527/jas.2010-3301

    Article  CAS  PubMed  Google Scholar 

  12. Ash RW, Dobson A (1963) The effect of absorption on the acidity of rumen contents. J Physiol 169:39–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachmann O, Juric M, Seidler U, Manns MP, Yu H (2011) Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol 201:33–46. https://doi.org/10.1111/j.1748-1716.2010.02153.x

    Article  CAS  Google Scholar 

  14. Bachmann O, Seidler U (2011) News from the end of the gut--how the highly segmental pattern of colonic HCO(3)(−) transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 34:794–802

    Article  CAS  PubMed  Google Scholar 

  15. Bailey CB (1961) Saliva secretion and its relation to feeding in cattle. 4. The relationship between the concentrations of sodium, potassium, chloride and inorganic phosphate in mixed saliva and rumen fluid. Br J Nutr 15:489–498

    Article  CAS  PubMed  Google Scholar 

  16. Barile CJ, Tse ECM, Li Y, Gewargis JP, Kirchschlager NA, Zimmerman SC, Gewirth AA (2016) The flip-flop diffusion mechanism across lipids in a hybrid bilayer membrane. Biophys J 110:2451–2462. https://doi.org/10.1016/j.bpj.2016.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bell PD, Komlosi P, Zhang ZR (2009) ATP as a mediator of macula densa cell signalling. Purinergic Signalling 5:461–471. https://doi.org/10.1007/s11302-009-9148-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bellomo R (2002) Bench-to-bedside review: lactate and the kidney. Crit Care 6:322–326

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    Article  CAS  PubMed  Google Scholar 

  20. Bilk S, Huhn K, Honscha KU, Pfannkuche H, Gäbel G (2005) Bicarbonate exporting transporters in the ovine ruminal epithelium. J Comp Physiol B Biochem Syst Environ Physiol 175:365–374. https://doi.org/10.1007/s00360-005-0493-1

    Article  CAS  Google Scholar 

  21. Binder HJ (2010) Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72:297–313. https://doi.org/10.1146/annurev-physiol-021909-135817

    Article  CAS  PubMed  Google Scholar 

  22. Binder HJ, Mehta P (1989) Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 96:989–996

    Article  CAS  PubMed  Google Scholar 

  23. Binder HJ, Rajendran V, Sadasivan V, Geibel JP (2005) Bicarbonate secretion: a neglected aspect of colonic ion transport. J Clin Gastroenterol 39:S53–S58

    Article  PubMed  Google Scholar 

  24. Blair-West JR, Coghlan JP, Denton DA, Goding JR, Wright RD (1963) The effect of aldosterone, cortisol, and corticosterone upon the sodium and potassium content of sheep's parotid saliva. J Clin Invest 42:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blatz AL, Magleby KL (1983) Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. Biophys J 43:237–241. https://doi.org/10.1016/S0006-3495(83)84344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boda JM, McDonald PG, Walker JJ (1965) Effects of the addition of fluids to the empty rumen on the flow rate and chemical composition of bovine mixed saliva. J Physiol 177:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borgese F, Renard C, Gabillat N, Pellissier B, Guizouarn H (2004) Molecular mapping of the conductance activity linked to tAE1 expressed in Xenopus oocyte. Biochim Biophys Acta 1664:80–87. https://doi.org/10.1016/j.bbamem.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  28. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  29. Bouyer G, Cueff A, Egee S, Kmiecik J, Maksimova Y, Glogowska E, Gallagher PG, Thomas SL (2011) Erythrocyte peripheral type benzodiazepine receptor/voltage-dependent anion channels are upregulated by plasmodium falciparum. Blood 118:2305–2312. https://doi.org/10.1182/blood-2011-01-329300

    Article  CAS  PubMed  Google Scholar 

  30. Brahm J (1983) Urea permeability of human red cells. J Gen Physiol 82:1–23

    Article  CAS  PubMed  Google Scholar 

  31. Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333(Pt 1):167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600. https://doi.org/10.1113/jphysiol.2009.178350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bugaut M (1987) Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B Comp Biochem 86:439–472

    Article  CAS  Google Scholar 

  34. Cabantchik IZ, Balshin M, Breuer W, Rothstein A (1975) Pyridoxal phosphate An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J Biol Chem 250:5130–5136

    CAS  PubMed  Google Scholar 

  35. Cabantchik ZI, Rothstein A (1974) Membrane proteins related to anion permeability of human red blood cells II Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membrs Biol 15:227–248

    Article  CAS  Google Scholar 

  36. Callan RJ, Applegate TJ (2017) Temporary rumenostomy for the treatment of forestomach diseases and enterals nutrition. Vet Clin North Am Food Animal Pract 33:525–537. https://doi.org/10.1016/j.cvfa.2017.06.008

    Article  Google Scholar 

  37. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128

    Article  CAS  PubMed  Google Scholar 

  38. Carpenter L, Halestrap AP (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J 304(Pt 3):751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Catalan MA, Flores CA, Gonzalez-Begne M, Zhang Y, Sepulveda FV, Melvin JE (2012) Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 142:346–354. https://doi.org/10.1053/j.gastro.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  40. Catterton TL, Erdman RA (2016) The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows. J Dairy Sci 99:6274–6284. https://doi.org/10.3168/jds.2016-10853

    Article  CAS  PubMed  Google Scholar 

  41. Charney AN, Dagher PC (2017) Acid-base effects on colonic electrolyte transport revisited. Gastroenterology 111:1358–1368. https://doi.org/10.1053/gast.1996.v111.agast961111358

    Article  Google Scholar 

  42. Clemens ET, Stevens CE, Southworth M (1975) Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of swine. J Nutr 105:759–768

    Article  CAS  PubMed  Google Scholar 

  43. Coady MJ, Wallendorff B, Bourgeois F, Lapointe JY (2010) Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1. Am J Physiol Cell Physiol 298:C124–C131. https://doi.org/10.1152/ajpcell.00220.2009

    Article  CAS  PubMed  Google Scholar 

  44. Cordat E, Reithmeier RA (2014) Structure, function, and trafficking of SLC4 and SLC26 anion transporters. Curr Top Membr 73:1–67. https://doi.org/10.1016/B978-0-12-800223-0.00001-3

    Article  CAS  PubMed  Google Scholar 

  45. Crowson MS, Shull GE (1992) Isolation and characterization of a cDNA encoding the putative distal colon H+,K(+)-ATPase. Similarity of deduced amino acid sequence to gastric H+,K(+)-ATPase and Na+,K(+)-ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 267:13740–13748

    CAS  PubMed  Google Scholar 

  46. Cuff MA, Lambert DW, Shirazi-Beechey SP (2002) Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J Physiol 539:361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Danielli JF, Hitchcock WS, Marshal RA, Phillipson AT (1945) The mechanism of absorption from the rumen as exemplified by the behaviour of acetic, propionic, and butyric acids. J Exp Bio 22:75–84

    CAS  Google Scholar 

  49. De Jesus-Perez JJ, Castro-Chong A, Shieh RC, Hernandez-Carballo CY, De Santiago-Castillo JA, Arreola J (2016) Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. J Gen Physiol 147:25–37. https://doi.org/10.1085/jgp.201511424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Del Castillo JR, Rajendran VM, Binder HJ (1991) Apical membrane localization of ouabain-sensitive K(+)-activated ATPase activities in rat distal colon. Am J Phys 261:G1005–G1011

    Google Scholar 

  51. Dengler F, Rackwitz R, Benesch F, Pfannkuche H, Gäbel G (2014) Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium. Acta Physiol 210:403–414. https://doi.org/10.1111/apha.12155

    Article  CAS  Google Scholar 

  52. Deuticke B, Rickert I, Beyer E (1978) Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta 507:137–155

    Article  CAS  PubMed  Google Scholar 

  53. Dieho K, Dijkstra J, Schonewille JT, Bannink A (2016) Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance. J Dairy Sci 99:5370–5384. https://doi.org/10.3168/jds.2015-10819

    Article  CAS  PubMed  Google Scholar 

  54. Dieho K, van Baal J, Kruijt L, Bannink A, Schonewille JT, Carreno D, Hendriks WH, Dijkstra J (2017) Effect of supplemental concentrate during the dry period or early lactation on rumen epithelium gene and protein expression in dairy cattle during the transition period. J Dairy Sci 100:7227–7245. https://doi.org/10.3168/jds.2016-12403

    Article  CAS  PubMed  Google Scholar 

  55. Diener M, Nobles M, Rummel W (1992) Activation of basolateral Cl- channels in the rat colonic epithelium during regulatory volume decrease. Pflugers Archiv : Eur J Physiol 421:530–538

    Article  CAS  Google Scholar 

  56. Diener M, Peter A, Scharrer E (1994) The role of volume-sensitive Cl- channels in the stimulation of chloride absorption by short-chain fatty acids in the rat colon. Acta Physiol Scand 151:385–394. https://doi.org/10.1111/j.1748-1716.1994.tb09758.x

    Article  CAS  PubMed  Google Scholar 

  57. Diener M, Scharrer E (1997) Effects of short-chain fatty acids on cell volume regulation and chloride transport in the rat distal colon. Comp Biochem Physiol A Physiol 118:375–379

    Article  CAS  PubMed  Google Scholar 

  58. Diernaes L, Sehested J, Moller PD, Skadhauge E (1994) Sodium and chloride transport across the rumen epithelium of cattle in vitro: effect of short-chain fatty acids and amiloride. Exp Physiol 79:755–762

    Article  CAS  PubMed  Google Scholar 

  59. Dijkstra J, Boer H, Van Bruchem J, Bruining M, Tamminga S (1993) Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. Br J Nutr 69:385–396

    Article  CAS  PubMed  Google Scholar 

  60. Dobson A (1959) Active transport through the epithelium of the reticulo-rumen sac. J Physiol 146:235–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dobson A, Phillipson AT (1958) The absorption of chloride ions from the reticulo-rumen sac. J Physiol 140:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S (2007) SLC26A9 is a Cl(-) channel regulated by the WNK kinases. J Physiol 584:333–345. https://doi.org/10.1113/jphysiol.2007.135855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dubois E, Grenson M (1979) Methylamine/ammonia uptake systems in saocharomyces cerevisiae: multiplicity and regulation. Mol Gen Genet 175:67–76

    Article  CAS  PubMed  Google Scholar 

  64. Dubyak GR (2012) Function without form: an ongoing search for maxi-anion channel proteins. Focus on “maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells”. Am J Physiol Cell Physiol 303:C913–C915. https://doi.org/10.1152/ajpcell.00285.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422. https://doi.org/10.1038/ng1297-411

    Article  CAS  PubMed  Google Scholar 

  66. Falke JJ, Chan SI (1985) Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study. J Biol Chem 260:9537–9544

    CAS  PubMed  Google Scholar 

  67. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    CAS  PubMed  Google Scholar 

  68. Fazio VW, Kiran RP, Remzi FH, Coffey JC, Heneghan HM, Kirat HT, Manilich E, Shen B, Martin ST (2013) Ileal pouch anal anastomosis: analysis of outcome and quality of life in 3707 patients. Ann Surg 257:679–685. https://doi.org/10.1097/SLA.0b013e31827d99a2

    Article  PubMed  Google Scholar 

  69. Fievet B, Gabillat N, Borgese F, Motais R (1995) Expression of band 3 anion exchanger induces chloride current and taurine transport: structure-function analysis. EMBO J 14:5158–5169

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fromm M, Piontek J, Rosenthal R, Gunzel D, Krug SM (2017) Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv : Europ J Physiol 469:877–887. https://doi.org/10.1007/s00424-017-2001-3

    Article  CAS  Google Scholar 

  71. Furukawa C, Ishizuka N, Hayashi H, Fujii N, Manabe A, Tabuchi Y, Matsunaga T, Endo S, Ikari A (2017) Up-regulation of claudin-2 expression by aldosterone in colonic epithelial cells of mice fed with NaCl-depleted diets. Sci Rep 7:12223. https://doi.org/10.1038/s41598-017-12494-1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gäbel G, Aschenbach JR, Müller F (2002) Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 3:15–30

    Article  PubMed  CAS  Google Scholar 

  73. Gäbel G, Butter H, Martens H (1999) Regulatory role of cAMP in transport of Na+, Cl- and short-chain fatty acids across sheep ruminal epithelium. Exp Physiol 84:333–345

    Article  PubMed  Google Scholar 

  74. Gäbel G, Vogler S, Martens H (1991) Short-chain fatty acids and CO2 as regulators of Na+ and Cl- absorption in isolated sheep rumen mucosa. J Comp Physiol B 161:419–426

    Article  PubMed  Google Scholar 

  75. Gäbel G, Vogler S, Martens H (1993) Mechanisms of sodium and chloride transport across isolated sheep reticulum. Comp Biochem Physiol A 105:1–10

    Article  Google Scholar 

  76. Galfi P, Veresegyhazy T, Neogrady S, Kutas F (1981) Effect of sodium n-butyrate on primary ruminal epithelial cell culture. Zentralblatt fur Veterinarmedizin Reihe A 28:259–261

    Article  CAS  PubMed  Google Scholar 

  77. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865–873

    Article  CAS  PubMed  Google Scholar 

  78. Gennari FJ, Weise WJ (2008) Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol : CJASN 3:1861–1868. https://doi.org/10.2215/CJN.02450508

    Article  CAS  PubMed  Google Scholar 

  79. Gentile A, Sconza S, Lorenz I, Otranto G, Rademacher G, Famigli-Bergamini P, Klee W (2004) D-lactic acidosis in calves as a consequence of experimentally induced ruminal acidosis. J Vet Med A Physiol Pathol Clin Med 51:64–70. https://doi.org/10.1111/j.1439-0442.2004.00600.x

    Article  CAS  PubMed  Google Scholar 

  80. Georgi MI, Rosendahl J, Ernst F, Günzel D, Aschenbach JR, Martens H, Stumpff F (2014) Epithelia of the ovine and bovine forestomach express basolateral maxi-anion channels permeable to the anions of short-chain fatty acids. Pflugers Archiv : Eur J Physiol 466:1689–1712. https://doi.org/10.1007/s00424-013-1386-x

    Article  CAS  Google Scholar 

  81. Gill RK, Saksena S, Alrefai WA, Sarwar Z, Goldstein JL, Carroll RE, Ramaswamy K, Dudeja PK (2005) Expression and membrane localization of MCT isoforms along the length of the human intestine. Am J Physiol Cell Physiol 289:C846–C852. https://doi.org/10.1152/ajpcell.00112.2005

    Article  CAS  PubMed  Google Scholar 

  82. Goncalves P, Araujo JR, Martel F (2011) Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. J Membr Biol 240:35–46. https://doi.org/10.1007/s00232-011-9340-3

    Article  CAS  PubMed  Google Scholar 

  83. Goncalves P, Araujo JR, Pinho MJ, Martel F (2009) Modulation of butyrate transport in Caco-2 cells. Naunyn Schmiedeberg's Arch Pharmacol 379:325–336. https://doi.org/10.1007/s00210-008-0372-x

    Article  CAS  Google Scholar 

  84. Goncalves P, Martel F (2013) Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab 14:994–1008

    Article  CAS  PubMed  Google Scholar 

  85. Graham C, Gatherar I, Haslam I, Glanville M, Simmons NL (2007) Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. Am J Physiol Reg Integr Comp Physiol 292:R997–1007. https://doi.org/10.1152/ajpregu.00343.2006

    Article  CAS  Google Scholar 

  86. Graham C, Simmons NL (2005) Functional organization of the bovine rumen epithelium. Am J Physiol Reg Integr Comp Physiol 288:R173–R181. https://doi.org/10.1152/ajpregu.00425.2004

    Article  CAS  Google Scholar 

  87. Gressley TF, Hall MB, Armentano LE (2011) Ruminant nutrition symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants. J Animal Sci 89:1120–1130. https://doi.org/10.2527/jas.2010-3460

    Article  CAS  Google Scholar 

  88. Grime JM, Edwards MA, Rudd NC, Unwin PR (2008) Quantitative visualization of passive transport across bilayer lipid membranes. Proc Natl Acad Sci U S A 105:14277–14282. https://doi.org/10.1073/pnas.0803720105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guda K, Fink SP, Milne GL, Molyneaux N, Ravi L, Lewis SM, Dannenberg AJ, Montgomery CG, Zhang S, Willis J, Wiesner GL, Markowitz SD (2014) Inactivating mutation in the prostaglandin transporter gene, SLCO2A1, associated with familial digital clubbing, colon neoplasia, and NSAID resistance. Cancer Prev Res 7:805–812. https://doi.org/10.1158/1940-6207.CAPR-14-0108

    Article  CAS  Google Scholar 

  90. Gunn RB, Frohlich O (1979) Asymmetry in the mechanism for anion exchange in human red blood cell membranes Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol 74:351–374

    Article  CAS  PubMed  Google Scholar 

  91. Gupta N, Martin PM, Prasad PD, Ganapathy V (2006) SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci 78:2419–2425. https://doi.org/10.1016/j.lfs.2005.10.028

    Article  CAS  PubMed  Google Scholar 

  92. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med 34:396–412. https://doi.org/10.1016/j.mam.2012.10.009

    Article  CAS  Google Scholar 

  93. Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9. https://doi.org/10.1002/iub.573

    Article  CAS  PubMed  Google Scholar 

  94. Halestrap AP (2013) The SLC16 gene family—structure, role and regulation in health and disease. Mol Asp Med 34:337–349. https://doi.org/10.1016/j.mam.2012.05.003

    Article  CAS  Google Scholar 

  95. Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J 138:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamburger HJ (1902) Osmotischer Druck und Ionenlehre in den medicinischen Wissenschaften. J.F. Bergmann, Wiesbaden. https://doi.org/10.5962/bhl.title.1840

    Book  Google Scholar 

  97. Harmeyer J, Martens H (1980) Aspects of urea metabolism in ruminants with reference to the goat. J Dairy Sci 63:1707–1728

    Article  CAS  PubMed  Google Scholar 

  98. Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  CAS  PubMed  Google Scholar 

  99. Heisler N (1986) Buffering and transmemebrane ion transfer processes. In: Heisler N (ed) Acid-base regulation in animals. Elsevier, Amsterdam, pp 3–48

    Google Scholar 

  100. Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182. https://doi.org/10.1152/physrev.00020.2007

    Article  CAS  PubMed  Google Scholar 

  101. Hernandez J, Benedito JL, Abuelo A, Castillo C (2014) Ruminal acidosis in feedlot: from aetiology to prevention. TheScientificWorldJOURNAL 2014:702572. https://doi.org/10.1155/2014/702572

    PubMed  PubMed Central  Google Scholar 

  102. Hille KT, Hetz SK, Rosendahl J, Braun HS, Pieper R, Stumpff F (2016) Determination of Henry's constant, the dissociation constant, and the buffer capacity of the bicarbonate system in ruminal fluid. J Dairy Sci 99:369–385. https://doi.org/10.3168/jds.2015-9486

    Article  CAS  PubMed  Google Scholar 

  103. Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319. https://doi.org/10.1038/ng1196-316

    Article  CAS  PubMed  Google Scholar 

  104. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Express Patterns : GEP 6:581–588. https://doi.org/10.1016/j.modgep.2005.12.001

    Article  CAS  Google Scholar 

  105. Holtenius K, Dahlborn K (1990) Water and sodium movements across the ruminal epithelium in fed and food-deprived sheep. Exp Physiol 75:57–67

    Article  CAS  PubMed  Google Scholar 

  106. Horger S, Schultheiss G, Diener M (1998) Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am J Phys 275:G1367–G1376

    CAS  Google Scholar 

  107. Huhn K, Müller F, Honscha KU, Pfannkuche H, Gäbel G (2003) Molecular and functional evidence for a Na(+)-HCO3(-)-cotransporter in sheep ruminal epithelium. J Comp Physiol B 173:277–284

    Article  CAS  PubMed  Google Scholar 

  108. Illek B, Tam AW, Fischer H, Machen TE (1999) Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflugers Archiv : Eur J Physiol 437:812–822. https://doi.org/10.1007/s004240050850

    Article  CAS  Google Scholar 

  109. Jennings ML, Adame MF (1996) Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 107:145–159

    Article  CAS  PubMed  Google Scholar 

  110. Jennings ML, Adams-Lackey M (1982) A rabbit erythrocyte membrane protein associated with L-lactate transport. J Biol Chem 257:12866–12871

    CAS  PubMed  Google Scholar 

  111. Jentsch TJ (2016) VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol 17:293–307. https://doi.org/10.1038/nrm.2016.29

    Article  CAS  PubMed  Google Scholar 

  112. John LJ, Fromm M, Schulzke JD (2011) Epithelial barriers in intestinal inflammation. Antioxid Redox Signal 15:1255–1270. https://doi.org/10.1089/ars.2011.3892

    Article  CAS  PubMed  Google Scholar 

  113. Johnson LR (2001) Fluid and electrolyte absorption. In: Johnson LR (ed) Gastrointestinal physiology, 6th edn. Mosby, Inc., St. Louis, p 144

    Google Scholar 

  114. Jones RS, Morris ME (2016) Monocarboxylate transporters: therapeutic targets and prognostic factors in disease. Clin Pharmacol Ther 100:454–463. https://doi.org/10.1002/cpt.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Juul CA, Grubb S, Poulsen KA, Kyed T, Hashem N, Lambert IH, Larsen EH, Hoffmann EK (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Archiv : Eur J Physiol 466:1899–1910. https://doi.org/10.1007/s00424-013-1428-4

    Article  CAS  Google Scholar 

  116. Khiao In M, Wallmeyer L, Hedtrich S, Richardson KC, Plendl J, Kaessmeyer S (2015) The effect of endothelialization on the epidermal differentiation in human three-dimensional skin constructs—a morphological study. Clin Hemorheol Microcirc 61:157–174. https://doi.org/10.3233/CH-151988

    Article  CAS  PubMed  Google Scholar 

  117. Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl- channel regulated by intracellular pH. J Biol Chem 280:6463–6470. https://doi.org/10.1074/jbc.M409162200

    Article  CAS  PubMed  Google Scholar 

  118. Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S (2006) Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J Physiol 576:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kirat D, Matsuda Y, Yamashiki N, Hayashi H, Kato S (2007) Expression, cellular localization, and functional role of monocarboxylate transporter 4 (MCT4) in the gastrointestinal tract of ruminants. Gene 391:140–149. https://doi.org/10.1016/j.gene.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  120. Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP (2003) Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med 50:406–414

    Article  CAS  PubMed  Google Scholar 

  121. Klein B (2012) Cunningham's textbook of veterinary physiology, 5th edn. Elsevier/Saunders, Amsterdam

    Google Scholar 

  122. Kleinfeld AM (2000) Lipid phase fatty acid flip-flop, is it fast enough for cellular transport? J Membr Biol 175:79–86

    Article  CAS  PubMed  Google Scholar 

  123. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  124. Kohn RA, Dunlap TF (1998) Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. J Anim Sci 76:1702–1709

    Article  CAS  PubMed  Google Scholar 

  125. Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    Article  CAS  PubMed  Google Scholar 

  126. Kramer SD, Lombardi D, Primorac A, Thomae AV, Wunderli-Allenspach H (2009) Lipid-bilayer permeation of drug-like compounds. Chem Biodivers 6:1900–1916. https://doi.org/10.1002/cbdv.200900122

    Article  PubMed  CAS  Google Scholar 

  127. Kramer T, Michelberger T, Gurtler H, Gäbel G (1996) Absorption of short-chain fatty acids across ruminal epithelium of sheep. J Comp Physiol B Biochem Syst Environ Physiol 166:262–269

    Article  CAS  Google Scholar 

  128. Kristensen NB, Gäbel G, Pierzynowski SG, Danfaer A (2000) Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulo-rumen of sheep. Br J Nutr 84:477–482

    CAS  PubMed  Google Scholar 

  129. Kristensen NB, Harmon DL (2004) Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. J Anim Sci 82:3549–3559

    Article  CAS  PubMed  Google Scholar 

  130. Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289. https://doi.org/10.1152/physrev.00026.2001

    Article  CAS  PubMed  Google Scholar 

  131. Kunzelmann K, Nilius B, Owsianik G, Schreiber R, Ousingsawat J, Sirianant L, Wanitchakool P, Bevers EM, Heemskerk JW (2014) Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Archiv : Eur J Physiol 466:407–414. https://doi.org/10.1007/s00424-013-1305-1

    Article  CAS  Google Scholar 

  132. Kunzelmann K, Schreiber R, Kmit A, Jantarajit W, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Tian Y (2012) Expression and function of epithelial anoctamins. Exp Physiol 97:184–192. https://doi.org/10.1113/expphysiol.2011.058206

    Article  CAS  PubMed  Google Scholar 

  133. Laarman AH, Pederzolli RA, Wood KM, Penner GB, McBride BW (2016) Effects of subacute ruminal acidosis and low feed intake on short-chain fatty acid transporters and flux pathways in Holstein steers. J Anim Sci 94:3729–3737. https://doi.org/10.2527/jas.2016-0638

    Article  CAS  PubMed  Google Scholar 

  134. Leonhard-Marek S, Becker G, Breves G, Schroder B (2007) Chloride, gluconate, sulfate, and short-chain fatty acids affect calcium flux rates across the sheep forestomach epithelium. J Dairy Sci 90:1516–1526

    Article  CAS  PubMed  Google Scholar 

  135. Leonhard-Marek S, Martens H (1996) Effects of potassium on magnesium transport across rumen epithelium. Am J Phys 271:G1034–G1038

    CAS  Google Scholar 

  136. Leonhard-Marek S, Stumpff F, Martens H (2010) Transport of cations and anions across forestomach epithelia: conclusions from in vitro studies. Animal : An Int J Animal Biosci 4:1037–1056. https://doi.org/10.1017/S1751731110000261

    Article  CAS  Google Scholar 

  137. Lepke S, Fasold H, Pring M, Passow H (1976) A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4′-diisothiocyano stilbene-2,2′-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol 29:147–177

    Article  CAS  PubMed  Google Scholar 

  138. Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 18:558–565. https://doi.org/10.1038/cr.2008.49

    Article  CAS  PubMed  Google Scholar 

  139. Lopez S, Hovell FD, Dijkstra J, France J (2003) Effects of volatile fatty acid supply on their absorption and on water kinetics in the rumen of sheep sustained by intragastric infusions. J Anim Sci 81:2609–2616. https://doi.org/10.2527/2003.81102609x

    Article  CAS  PubMed  Google Scholar 

  140. Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F, Ehrenfeld J (2008) Characterization of SLC26A9, facilitation of Cl(-) transport by bicarbonate. Cell Physiol Biochem : Int J Exp Cell Physiol Biochem Pharmacol 22:15–30. https://doi.org/10.1159/000149780

    Article  CAS  Google Scholar 

  141. Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41. https://doi.org/10.1111/1462-2920.13589

    Article  CAS  PubMed  Google Scholar 

  142. Lux SE, John KM, Kopito RR, Lodish HF (1989) Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci U S A 86:9089–9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Marini AM, Urrestarazu A, Beauwens R, Andre B (1997) The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci 22:460–461

    Article  CAS  PubMed  Google Scholar 

  144. Martens H, Blume I (1986) Effect of intraruminal sodium and potassium concentrations and of the transmural potential difference on magnesium absorption from the temporarily isolated rumen of sheep. Q J Exp Physiol 71:409–415

    Article  CAS  PubMed  Google Scholar 

  145. Martens H, Gäbel G, Strozyk B (1991) Mechanism of electrically silent Na and Cl transport across the rumen epithelium of sheep. Exp Physiol 76:103–114

    Article  CAS  PubMed  Google Scholar 

  146. Mascolo N, Rajendran VM, Binder HJ (1991) Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101:331–338

    Article  CAS  PubMed  Google Scholar 

  147. Masson MJ, Phillipson AT (1951) The absorption of acetate, propionate and butyrate from the rumen of sheep. J Physiol 113:189–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Matsukura N, Asano G (1997) Anatomy, histology, ultrastructure, stomach, rat. In: T.C. J, J.A. P, U. M (eds) Digestive system. Monographs on pathology of laboratory animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60473-7_52

  149. Meissner S, Hagen F, Deiner C, Günzel D, Greco G, Shen Z, Aschenbach JR (2017) Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. J Dairy Sci 100:6662–6675. https://doi.org/10.3168/jds.2016-12262

    Article  CAS  PubMed  Google Scholar 

  150. Metzler-Zebeli BU, Hollmann M, Sabitzer S, Podstatzky-Lichtenstein L, Klein D, Zebeli Q (2013) Epithelial response to high-grain diets involves alteration in nutrient transporters and Na+/K+-ATPase mRNA expression in rumen and colon of goats. J Anim Sci 91:4256–4266. https://doi.org/10.2527/jas.2012-5570

    Article  CAS  PubMed  Google Scholar 

  151. Missner A, Pohl P (2009) 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Miyauchi S, Gopal E, Fei YJ, Ganapathy V (2004) Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. J Biol Chem 279:13293–13296. https://doi.org/10.1074/jbc.C400059200

    Article  CAS  PubMed  Google Scholar 

  153. Mond R (1927) Umkehr der Anionenpermeabilität der roten Blutkörperchen in eine elektive Durchlässigkeit für Kationen. Pflugers Archiv : Eur J Physiol 217:618–630. https://doi.org/10.1007/BF01723712

    Article  CAS  Google Scholar 

  154. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  155. Moschen I, Broer A, Galic S, Lang F, Broer S (2012) Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res 37:2562–2568. https://doi.org/10.1007/s11064-012-0857-3

    Article  CAS  PubMed  Google Scholar 

  156. Mosenthin R, Sauer WC, de Lange CF (1992) Tracer studies of urea kinetics in growing pigs: I The effect of intravenous infusion of urea on urea recycling and the site of urea secretion into the gastrointestinal tract. J Animal Sci 70:3458–3466

    Article  CAS  Google Scholar 

  157. Moss S, Gordon D, Forsling ML, Peart WS, James VH, Roddis SA (1981) Water and electrolyte composition of urine and ileal fluid and its relationship to renin and aldosterone during dietary sodium deprivation in patients with ileostomies. Clin Sci 61:407–415

    Article  CAS  PubMed  Google Scholar 

  158. Müller F, Huber K, Pfannkuche H, Aschenbach JR, Breves G, Gäbel G (2002) Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 283:G1139–G1146. https://doi.org/10.1152/ajpgi.00268.2001

    Article  PubMed  Google Scholar 

  159. Musch MW, Arvans DL, Wu GD, Chang EB (2009) Functional coupling of the downregulated in adenoma Cl-/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am J Physiol Gastrointest Liver Physiol 296:G202–G210. https://doi.org/10.1152/ajpgi.90350.2008

    Article  CAS  PubMed  Google Scholar 

  160. Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB (2001) SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 280:G687–G693

    Article  CAS  PubMed  Google Scholar 

  161. Mutoh K, Wakuri H (1989) Early organogenesis of the caprine stomach. Nippon Juigaku Zasshi 51:474–484

    Article  CAS  PubMed  Google Scholar 

  162. Nasse H (1878) Untersuchungen fiber den Austritt und Eintritt yon Stoffen (Transsudation und Diffusion) durch die Wand der Haargefäße. Pflugers Archiv : Eur J Physiol 16:604–634. https://doi.org/10.1007/BF01647557

    Article  Google Scholar 

  163. Nedjadi T, Moran AW, Al-Rammahi MA, Shirazi-Beechey SP (2014) Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol 99:1335–1347. https://doi.org/10.1113/expphysiol.2014.077982

    Article  CAS  PubMed  Google Scholar 

  164. Noor SI, Pouyssegur J, Deitmer JW, Becker HM (2017) Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4. FEBS J 284:149–162. https://doi.org/10.1111/febs.13964

    Article  CAS  PubMed  Google Scholar 

  165. Oetzel GR (2017) Diagnosis and management of subacute ruminal acidosis in dairy herds. Vet Clin North Am Food Animal Prac 33:463–480. https://doi.org/10.1016/j.cvfa.2017.06.004

    Article  Google Scholar 

  166. Oh U, Jung J (2016) Cellular functions of TMEM16/anoctamin. Pflugers Archiv : Eur J Physiol 468:443–453. https://doi.org/10.1007/s00424-016-1790-0

    Article  CAS  Google Scholar 

  167. Ohana E, Yang D, Shcheynikov N, Muallem S (2009) Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol 587:2179–2185. https://doi.org/10.1113/jphysiol.2008.164863

    Article  CAS  PubMed  Google Scholar 

  168. Overton CE (1901) Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Gustav Fischer, Jena

    Google Scholar 

  169. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  CAS  PubMed  Google Scholar 

  170. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959. https://doi.org/10.1152/physrev.00023.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Parker MD, Young MT, Daly CM, Meech RW, Boron WF, Tanner MJ (2007) A conductive pathway generated from fragments of the human red cell anion exchanger AE1. J Physiol 581:33–50. https://doi.org/10.1113/jphysiol.2007.128389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Petersen C (2005) D-lactic acidosis. Nutr Clin Pract : Off Publ Am Soc Parenter Enteral Nutr 20:634–645. https://doi.org/10.1177/0115426505020006634

    Article  Google Scholar 

  173. Phillipson AT, McAnnally RA (1942) Studies on the fate of carbohydrates in the rumen of the sheep. J Exp Biol 19:199–214

    Google Scholar 

  174. Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176:21–31

    Article  CAS  PubMed  Google Scholar 

  175. Plöger S, Stumpff F, Penner GB, Schulzke JD, Gäbel G, Martens H, Shen Z, Günzel D, Aschenbach JR (2012) Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 1258:52–59. https://doi.org/10.1111/j.1749-6632.2012.06553.x

    Article  PubMed  CAS  Google Scholar 

  176. Poole RC, Halestrap AP (1988) Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes. Biochem J 254:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Phys 264:C761–C782

    Article  CAS  Google Scholar 

  178. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  179. Qu Z, Hartzell HC (2000) Anion permeation in Ca(2+)-activated Cl(-) channels. J Gen Physiol 116:825–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rabbani I, Siegling-Vlitakis C, Noci B, Martens H (2011) Evidence for NHE3-mediated Na transport in sheep and bovine forestomach. Am J Physiol Reg Integr Comp Physiol 301:R313–R319. https://doi.org/10.1152/ajpregu.00580.2010

    Article  CAS  Google Scholar 

  181. Rackwitz R, Gabel G (2017) Permeation of acetate across sheep ruminal epithelium is partly mediated by an anion channel. Res Vet Sci 117:10–17. https://doi.org/10.1016/j.rvsc.2017.11.004

    Article  PubMed  CAS  Google Scholar 

  182. Rajendran VM, Binder HJ (1994) Apical membrane Cl-butyrate exchange: mechanism of short chain fatty acid stimulation of active chloride absorption in rat distal colon. J Membr Biol 141:51–58

    Article  CAS  PubMed  Google Scholar 

  183. Rasmussen H, Mirtaheri P, Dirven H, Johnsen H, Kvarstein G, Tonnessen TI, Midtvedt T (2002) PCO(2) in the large intestine of mice, rats, guinea pigs, and dogs and effects of the dietary substrate. J Appl Physiol 92:219–224. https://doi.org/10.1152/japplphysiol.00190.2001

    Article  PubMed  Google Scholar 

  184. Rechkemmer G, Ronnau K, von Engelhardt W (1988) Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A Comp Physiol 90:563–568

    Article  CAS  PubMed  Google Scholar 

  185. Rechkemmer G, Wahl M, Kuschinsky W, von Engelhardt W (1986) pH-microclimate at the luminal surface of the intestinal mucosa of guinea pig and rat. Pflugers Archiv : Eur J Physiol 407:33–40

    Article  CAS  Google Scholar 

  186. Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta 1858:1507–1532. https://doi.org/10.1016/j.bbamem.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  187. Reynolds CK, Kristensen NB (2008) Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J Anim Sci 86:E293–E305

    Article  CAS  PubMed  Google Scholar 

  188. Richards N, Hinch G, Rowe J (2006) The effect of current grain feeding practices on hindgut starch fermentation and acidosis in the Australian racing thoroughbred. Aust Vet J 84:402–407. https://doi.org/10.1111/j.1751-0813.2006.00059.x

    Article  CAS  PubMed  Google Scholar 

  189. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17. https://doi.org/10.1016/j.bbi.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  190. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP (1998) Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol 513(Pt 3):719–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO(3)(-)) transporters. Mol Asp Med 34:159–182. https://doi.org/10.1016/j.mam.2012.10.008

    Article  CAS  Google Scholar 

  192. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter. Nature 387:409–413. https://doi.org/10.1038/387409a0

    Article  CAS  PubMed  Google Scholar 

  193. Rosendahl J, Braun HS, Schrapers KT, Martens H, Stumpff F (2016) Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium. Pflugers Archiv : Eur J Physiol 468:1333–1352. https://doi.org/10.1007/s00424-016-1835-4

    Article  CAS  Google Scholar 

  194. Rosenthal R, Günzel D, Theune D, Czichos C, Schulzke JD, Fromm M (2017) Water channels and barriers formed by claudins. Ann N Y Acad Sci 1397:100–109. https://doi.org/10.1111/nyas.13383

    Article  CAS  PubMed  Google Scholar 

  195. Rübsamen K, von Engelhardt W (1981) Absorption of Na, H ions and short chain fatty acids from the sheep colon. Pflugers Archiv : Eur J Physiol 391:141–146

    Article  Google Scholar 

  196. Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y (2016) The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Archiv : Eur J Physiol 468:405–420. https://doi.org/10.1007/s00424-015-1774-5

    Article  CAS  Google Scholar 

  197. Sabirov RZ, Merzlyak PG, Okada T, Islam MR, Uramoto H, Mori T, Makino Y, Matsuura H, Xie Y, Okada Y (2017) The organic anion transporter SLCO2A1 constitutes the core component of the Maxi‐Cl channel. The EMBO journal 36:3309–3324. https://doi.org/10.15252/embj.201796685

  198. Saparov SM, Antonenko YN, Pohl P (2006) A new model of weak acid permeation through membranes revisited: does Overton still rule? Biophys J 90:L86–L88. https://doi.org/10.1529/biophysj.106.084343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS (1993) Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A 90:4166–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    CAS  PubMed  Google Scholar 

  201. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443. https://doi.org/10.1038/7783

    Article  CAS  PubMed  Google Scholar 

  202. Sehested J, Diernaes L, Moller PD, Skadhauge E (1993) Interaction between absorption of sodium and acetate across the rumen epithelium of cattle. Acta Vet Scand Suppl 89:107–108

    CAS  PubMed  Google Scholar 

  203. Sehested J, Diernaes L, Moller PD, Skadhauge E (1996) Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Exp Physiol 81:79–94

    Article  CAS  PubMed  Google Scholar 

  204. Sehested J, Diernaes L, Moller PD, Skadhauge E (1999) Transport of butyrate across the isolated bovine rumen epithelium—interaction with sodium, chloride and bicarbonate. Comp Biochem Physiol A Mol Integr Physiol 123:399–408

    Article  CAS  PubMed  Google Scholar 

  205. Sellers AF, Dobson A (1960) Studies on reticulo-rumen sodium and potassium concentration and electrical potentials in sheep. Res Vet Sci 1:95–102

    CAS  Google Scholar 

  206. Sellin JH (1999) SCFAs: the enigma of weak electrolyte transport in the colon. News in physiol sci : Int J Physiol produced jointly by the Int Union of Physiol Sci Am Physiol Soc 14:58–64

    CAS  Google Scholar 

  207. Sellin JH, DeSoignie R (1990) Short-chain fatty acid absorption in rabbit colon in vitro. Gastroenterology 99:676–683

    Article  CAS  PubMed  Google Scholar 

  208. Shao J, Gumz ML, Cain BD, Xia SL, Shull GE, van Driel IR, Wingo CS (2010) Pharmacological profiles of the murine gastric and colonic H,K-ATPases. Biochim Biophys Acta 1800:906–911. https://doi.org/10.1016/j.bbagen.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shayakul C, Clemencon B, Hediger MA (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Asp Med 34:313–322. https://doi.org/10.1016/j.mam.2012.12.003

    Article  CAS  Google Scholar 

  210. Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ, Muallem S (2006) Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127:511–524. https://doi.org/10.1085/jgp.200509392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shull GE, Miller ML, Schultheis PJ (2000) Lessons from genetically engineered animal models VIII Absorption and secretion of ions in the gastrointestinal tract. Am J Physiol Gastrointestinal and liver Physiol 278:G185–G190

    Article  CAS  Google Scholar 

  212. Silanikove N (1994) The struggle to maintain hydration and osmoregulation in animals experiencing severe dehydration and rapid rehydration: the story of ruminants. Exp Physiol 79:281–300

    Article  CAS  PubMed  Google Scholar 

  213. Silanikove N, Tadmor A (1989) Rumen volume, saliva flow rate, and systemic fluid homeostasis in dehydrated cattle. Am J Phys 256:R809–R815

    CAS  Google Scholar 

  214. Snyder E, Credille B (2017) Diagnosis and treatment of clinical rumen acidosis. Vet Clin North Am Food Animal Pract 33:451–461. https://doi.org/10.1016/j.cvfa.2017.06.003

    Article  Google Scholar 

  215. Steele MA, Croom J, Kahler M, AlZahal O, Hook SE, Plaizier K, McBride BW (2011) Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am J Physiol Reg Integr Comp Physiol 300:R1515–R1523. https://doi.org/10.1152/ajpregu.00120.2010

    Article  CAS  Google Scholar 

  216. Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    Article  CAS  PubMed  Google Scholar 

  217. Stevens CE, Stettler BK (1967) Evidence for active transport of acetate across bovine rumen epithelium. Am J Phys 213:1335–1339

    CAS  Google Scholar 

  218. Storm AC, Hanigan MD, Kristensen NB (2011) Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows. J Dairy Sci 94:3980–3994. https://doi.org/10.3168/jds.2010-4091

    Article  CAS  PubMed  Google Scholar 

  219. Storm AC, Kristensen NB, Rojen BA, Larsen M (2013) Technical note: a method for quantification of saliva secretion and salivary flux of metabolites in dairy cows. J Anim Sci 91:5769–5774. https://doi.org/10.2527/jas.2013-6865

    Article  CAS  PubMed  Google Scholar 

  220. Stumpff F, Georgi MI, Mundhenk L, Rabbani I, Fromm M, Martens H, Günzel D (2011) Sheep rumen and omasum primary cultures and source epithelia: barrier function aligns with expression of tight junction proteins. J Exp Biol 214:2871–2882. https://doi.org/10.1242/jeb.055582

    Article  CAS  PubMed  Google Scholar 

  221. Stumpff F, Lodemann U, Van Kessel AG, Pieper R, Klingspor S, Wolf K, Martens H, Zentek J, Aschenbach JR (2013) Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets. J Comp Physiol B Biochem Syst Environ Physiol 183:1053–1063. https://doi.org/10.1007/s00360-013-0771-2

    Article  CAS  Google Scholar 

  222. Stumpff F, Martens H, Bilk S, Aschenbach JR, Gäbel G (2009) Cultured ruminal epithelial cells express a large-conductance channel permeable to chloride, bicarbonate, and acetate. Pflugers Archiv (Eur J Physiol) 457:1003–1022. https://doi.org/10.1007/s00424-008-0566-6

    Article  CAS  Google Scholar 

  223. Suzuki Y, Kaneko K (1989) Ouabain-sensitive H+-K+ exchange mechanism in the apical membrane of guinea pig colon. Am J Phys 256:G979–G988

    CAS  Google Scholar 

  224. Tamai I, Takanaga H, Maeda H, Sai Y, Ogihara T, Higashida H, Tsuji A (1995) Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem Biophys Res Commun 214:482–489. https://doi.org/10.1006/bbrc.1995.2312

    Article  CAS  PubMed  Google Scholar 

  225. Tang J, Pecka JL, Tan X, Beisel KW, He DZ (2011) Engineered pendrin protein, an anion transporter and molecular motor. J Biol Chem 286:31014–31021. https://doi.org/10.1074/jbc.M111.259564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tappeiner H (1884) Untersuchung über die Gärung der Cellulose, insbesondere über deren Lösung im Darmkanale. Zeitschr f  Biol 20:52–134

  227. Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP (2010) Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 16:684–695. https://doi.org/10.1002/ibd.21108

    Article  PubMed  Google Scholar 

  228. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    Article  CAS  PubMed  Google Scholar 

  229. Tsuji A, Simanjuntak MT, Tamai I, Terasaki T (1990) pH-dependent intestinal transport of monocarboxylic acids: carrier-mediated and H(+)-cotransport mechanism versus pH-partition hypothesis. J Pharm Sci 79:1123–1124

    Article  CAS  PubMed  Google Scholar 

  230. Turnberg LA (1970) Electrolyte absorption from the colon. Gut 11:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS (1970) Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Invest 49:557–567. https://doi.org/10.1172/JCI106266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Umeno J, Hisamatsu T, Esaki M, Hirano A, Kubokura N, Asano K, Kochi S, Yanai S, Fuyuno Y, Shimamura K, Hosoe N, Ogata H, Watanabe T, Aoyagi K, Ooi H, Watanabe K, Yasukawa S, Hirai F, Matsui T, Iida M, Yao T, Hibi T, Kosaki K, Kanai T, Kitazono T, Matsumoto T (2015) A hereditary enteropathy caused by mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. PLoS Genet 11:e1005581. https://doi.org/10.1371/journal.pgen.1005581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM (2005) Role of short-chain fatty acids in colonic HCO(3) secretion. Am J Phys 288:G1217–G1226

    CAS  Google Scholar 

  234. Villodre Tudela C, Boudry C, Stumpff F, Aschenbach JR, Vahjen W, Zentek J, Pieper R (2015) Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling. Br J Nutr 113:610–617. https://doi.org/10.1017/S0007114514004231

    Article  CAS  PubMed  Google Scholar 

  235. Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  CAS  PubMed  Google Scholar 

  236. Wang Z, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl(-)/HCO3(-) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282:G573–G579. https://doi.org/10.1152/ajpgi.00338.2001

    Article  CAS  PubMed  Google Scholar 

  237. Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC (2007) Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physio Renal physiol 292:F1345–F1353. https://doi.org/10.1152/ajprenal.00487.2006

    Article  CAS  Google Scholar 

  238. Warner AC, Stacy BD (1972) Water, sodium and potassium movements across the rumen wall of sheep. Q J Exp Physiol Cogn Med Sci 57:103–119

    CAS  PubMed  Google Scholar 

  239. Wilson MC, Meredith D, Bunnun C, Sessions RB, Halestrap AP (2009) Studies on the DIDS-binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle. J Biol Chem 284:20011–20021. https://doi.org/10.1074/jbc.M109.014217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 280:27213–27221. https://doi.org/10.1074/jbc.M411950200

    Article  CAS  PubMed  Google Scholar 

  241. Wolffram S, Frischknecht R, Scharrer E (1989) Influence of theophylline on the electrical potential difference and ion fluxes (Na, Cl, K) across the isolated rumen epithelium of sheep. Zentralbl Veterinarmed A 36:755–762

    Article  CAS  PubMed  Google Scholar 

  242. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    Article  CAS  PubMed  Google Scholar 

  243. Wrong OM, Edmonds CJ, Chadwick VS (1981) Composition of large bowel contents. In: Wrong OM (ed) The large intestine. MTP Press limited, London, pp 15–23

    Google Scholar 

  244. Wurmli R, Wolffram S, Scharrer E (1987) Inhibition of chloride absorption from the sheep rumen by nitrate. Zentralbl Veterinarmed A 34:476–479

    Article  CAS  PubMed  Google Scholar 

  245. Xia W, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song P, Tian DA, Soleiman M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Archiv : Eur J Physiol 466:1541–1556. https://doi.org/10.1007/s00424-013-1381-2

    Article  CAS  Google Scholar 

  246. Xiang R, Oddy VH, Archibald AL, Vercoe PE, Dalrymple BP (2016) Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 4:e1762. https://doi.org/10.7717/peerj.1762

    Article  PubMed  PubMed Central  Google Scholar 

  247. Xiang TX, Anderson BD (1998) Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys J 75:2658–2671. https://doi.org/10.1016/S0006-3495(98)77711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang GH, Zhu JX, Xue H, Fan J, Chen X, Tsang LL, Chung YW, Xing Y, Chan HC (2007) Dopamine stimulates Cl(-) absorption coupled with HCO(3)(-) secretion in rat late distal colon. Eur J Pharmacol 570:188–195. https://doi.org/10.1016/j.ejphar.2007.05.038

    Article  CAS  PubMed  Google Scholar 

  249. Zhang ZH, Solomon AK (1992) Effect of pCMBS on anion transport in human red cell membranes. Biochim Biophys Acta 1106:31–39

    Article  CAS  PubMed  Google Scholar 

  250. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155. https://doi.org/10.1038/35012009

    Article  CAS  PubMed  Google Scholar 

  251. Zuntz N (1879) Gesichtspunkte zum kritischen Studium der neueren Arbeiten auf dem Gebiet der Ernährung. Landwirtschaftl Jahrbuch 8:65–117

    Google Scholar 

Download references

Acknowledgments

My profound thanks to all members of the Institute of Veterinary Physiology for help in many ways and to the many researchers with whom I have discussed SCFA transport over the years. I would also like to thank Yamina Stumpff-Niggemann and Elisabeth Heesom for help with proof-reading and Nils Niggemann for help with the graphics.

Funding

The author wishes to acknowledge the Deutsche Forschungsgemeinschaft (DFG Stu-258/7-1, STU 258/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Stumpff.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stumpff, F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch - Eur J Physiol 470, 571–598 (2018). https://doi.org/10.1007/s00424-017-2105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2105-9

Keywords

Navigation