Skip to main content
Log in

Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe H, Kanno Y, Ino K, Inoue KY, Suda A, Kunikata R, Matsudaira M, Shiku H, Matsue T (2016) Electrochemical imaging for single-cell analysis of cell adhesion using a collagen-coated large-scale integration (LSI)-based amperometric device. Electrochemistry 84:364–367. https://doi.org/10.5796/electrochemistry.84.364

    Article  CAS  Google Scholar 

  2. Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512. https://doi.org/10.1038/39081

    Article  CAS  PubMed  Google Scholar 

  3. Ayers S, Berberian K, Gillis KD, Lindau M, Minch BA (2010) Post-CMOS fabrication of working electrodes for on-chip recordings of transmitter release. IEEE Trans Biomed Circuits Syst 4:86–92. https://doi.org/10.1109/TBCAS.2009.2033706

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ayers S, Member S, Gillis KD, Lindau M, Minch BA (2007) Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst 54:736–744. https://doi.org/10.1109/TCSI.2006.888777

    Article  Google Scholar 

  5. Ballini M, Müller J, Member S, Livi P, Member S, Chen Y, Frey U, Stettler A, Shadmani A, Viswam V, Jones IL, Jäckel D, Radivojevic M, Lewandowska MK, Member S, Gong W, Fiscella M, Bakkum DJ, Heer F, Hierlemann A (2014) A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J Solid State Circuits 49:2705–2719. https://doi.org/10.1109/JSSC.2014.2359219

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berberian K, Kisler K, Fang Q, Lindau M (2009) Improved surface patterned platinum microelectrodes for the study of exocytotic events. Anal Chem 81:8734–8740. https://doi.org/10.1021/ac900674g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL (2011) Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 41:200–218. https://doi.org/10.1016/j.jchemneu.2011.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E (2017) Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem Neurosci 8:252–264. https://doi.org/10.1021/acschemneuro.6b00328

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Gao Y, Hossain M, Gangopadhyay S, Gillis KD (2008) Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Lab Chip 8:161–169. https://doi.org/10.1039/b715308m

    Article  CAS  PubMed  Google Scholar 

  10. Chow RH, von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:62–65. https://doi.org/10.1038/356060a0

    Article  Google Scholar 

  11. Colliver TL, Hess EJ, Pothos EN, Sulzer D, Ewing AG (2000) Quantitative and statistical analysis of the shape of amperometric spikes recorded from two populations of cells. J Neurochem 74:1086–1097. https://doi.org/10.1046/j.1471-4159.2000.741086.x

    Article  CAS  PubMed  Google Scholar 

  12. Cuevas J, Rodriguez A, Behensky A, Katnik C (2011) Afobazole modulates microglial function via activation of both σ-1 and σ-2 receptors. J Pharmacol Exp Ther 339:161–172. https://doi.org/10.1124/jpet.111.182816

    Article  CAS  PubMed  Google Scholar 

  13. Dias AF, Dernick G, Valero V, Yong MG, James CD, Craighead HG, Lindau M (2002) An electrochemical detector array to study cell biology on the nanoscale. Nanotechnology 13:285–289. https://doi.org/10.1088/0957-4484/13/3/309

    Article  CAS  Google Scholar 

  14. Dong Y, Heien ML, Maxson MM, Ewing AG (2009) Amperometric measurements of catecholamine release from single vesicles in MN9D cells. J Neurochem 107:1589–1595. https://doi.org/10.1111/j.1471-4159.2008.05721.x

    Article  Google Scholar 

  15. Gao C, Sun X, Gillis KD (2013) Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays. Biomed Microdevices 15:445–451. https://doi.org/10.1007/s10544-013-9744-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao W, Emaminejad S, Yin H, Nyein Y, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514. https://doi.org/10.1038/nature16521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Y, Bhattacharya S, Chen X, Barizuddin S, Gangopadhyay S, Gillis KD (2009) A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells. Lab Chip 9:3442–3446. https://doi.org/10.1039/b913216c

    Article  CAS  PubMed  Google Scholar 

  18. Gao Y, Chen X, Gupta S, Gillis KD, Gangopadhyay S (2009) Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells. Biomed Microdevices 10:623–629. https://doi.org/10.1007/s10544-008-9173-8

    Article  Google Scholar 

  19. Gerhardt G, Adams RN (1982) Defermination of diffusion coefficients by flow injection analysis. Anal Chem 54:2618–2620. https://doi.org/10.1021/ac00251a054

    Article  CAS  Google Scholar 

  20. Gong L, De Toledo GA, Lindau M (2007) Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane but Na+ influx through the fusion pore. Nat Cell Biol 9:915–922. https://doi.org/10.1038/ncb1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. PNAS 102:13879–13884. https://doi.org/10.1073/pnas.0504098102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayasaka T, Yoshida S, Inoue KY, Nakano M, Matsue T, Esashi M, Tanaka S (2015) Integration of boron-doped diamond microelectrode on CMOS-based amperometric sensor array by film transfer technology. J Microelectromech Syst 24:958–967. https://doi.org/10.1109/JMEMS.2014.2360837

    Article  CAS  Google Scholar 

  23. Inoue KY, Matsudaira M, Nakano M, Ino K, Sakamoto C, Kanno Y, Kubo R, Kunikata R, Kira A, Suda A, Tsurumi R, Shioya T, Yoshida S, Muroyama M, Ishikawa T, Shiku H, Satoh S, Esashi M, Matsue T (2015) Advanced LSI-based amperometric sensor array with light-shielding structure for effective removal of photocurrent and mode selectable function for individual operation of 400 electrodes. Lab Chip 15:848–856. https://doi.org/10.1039/C4LC01099J

    Article  CAS  PubMed  Google Scholar 

  24. Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911. https://doi.org/10.1146/annurev.biochem.68.1.863

    Article  CAS  PubMed  Google Scholar 

  25. Kanno Y, Ino K, Inoue KY, Suda A, Kunikata R, Matsudaira M, Shiku H, Matsue T (2015) Simulation analysis of positional relationship between embryoid bodies and sensors on an LSI-based amperometric device for electrochemical imaging of alkaline phosphatase activity. Anal Sci 31:715–719. https://doi.org/10.2116/analsci.31.715

    Article  CAS  PubMed  Google Scholar 

  26. Kim BN, Herbst AD, Kim SJ, Minch BA, Lindau M (2013) Parallel recording of neurotransmitters release from chromaffin cells using a 10 × 10 CMOS IC potentiostat array with on-chip working electrodes. Biosens Bioelectron 41:736–744. https://doi.org/10.1016/j.bios.2012.09.058

    Article  CAS  PubMed  Google Scholar 

  27. Kisler K, Kim BN, Liu X, Berberian K, Fang Q, Mathai CJ, Gangopadhyay S, Gillis KD, Lindau M (2012) Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy. J Biomater Nanobiotechnol 3:243–253. https://doi.org/10.4236/jbnb.2012.322030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitamura Y, Yagi T, Kitagawa K, Shinomiya K, Kawasaki H, Asanuma M, Gomita Y (2010) Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats. Naunyn Schmiedeberg's Arch Pharmacol 382:151–158. https://doi.org/10.1007/s00210-010-0521-x

    Article  CAS  Google Scholar 

  29. Lemaître F, Guille M, Amatore C (2014) Recent advances in electrochemical detection of exocytosis. Electrochim Acta 140:457–466. https://doi.org/10.1016/j.electacta.2014.02.059

    Article  Google Scholar 

  30. Liu X, Barizuddin S, Shin W, Mathai CJ, Gangopadhyay S, Gillis KD (2011) Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Anal Chem 83:2445–2451. https://doi.org/10.1021/ac1033616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Machado JD, Gómez JF, Betancor G, Camacho M, Brioso MA, Borges R (2002) Hydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles. Circ Res 91:830–837. https://doi.org/10.1161/01.RES.0000039530.30495.6F

    Article  CAS  PubMed  Google Scholar 

  32. Misun PM, Rothe J, Schmid YRF, Hierlemann A, Frey O (2016) Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsystems Nanoeng 2:16022. https://doi.org/10.1038/micronano.2016.22

    Article  CAS  Google Scholar 

  33. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658. https://doi.org/10.1038/NMETH782

    Article  CAS  PubMed  Google Scholar 

  34. Müller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15:2767–2780. https://doi.org/10.1039/C5LC00133A

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parsons TD, Coorsen JR, Horstmann H, Almers W (1995) Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085–1096. https://doi.org/10.1016/0896-6273(95)90097-7

    Article  CAS  PubMed  Google Scholar 

  36. Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A, Carbone E, Olivero P, Carabelli V (2016) Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal Chem 88:7493–7499. https://doi.org/10.1021/acs.analchem.5b04449

    Article  CAS  PubMed  Google Scholar 

  37. Picollo F, Battiato A, Bernardi E, Plaitano M, Franchino C, Gosso S, Pasquarelli A, Carbone E, Olivero P, Carabelli V (2016) All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci Rep 6:20682. https://doi.org/10.1038/srep20682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Picollo F, Battiato A, Carbone E, Croin L, Enrico E, Forneris J, Gosso S, Olivero P, Pasquarelli A, Carabelli V (2015) Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors (Switzerland) 15:515–528. https://doi.org/10.3390/s150100515

    Article  Google Scholar 

  39. Picollo F, Gosso S, Vittone E, Pasquarelli A, Carbone E, Olivero P, Carabelli V (2013) A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Adv Mater 25:4696–4700. https://doi.org/10.1002/adma.201300710

    Article  CAS  PubMed  Google Scholar 

  40. Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D (1998) D2-like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci 18:5575–5585

    CAS  PubMed  Google Scholar 

  41. Schroeder TJ, Jankowski JA, Kawagoe KT, Wightman RM, Lefrou C, Amatore C (1992) Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Anal Chem 64:3077–3083. https://doi.org/10.1021/ac00048a003

    Article  CAS  PubMed  Google Scholar 

  42. Singh YS, Sawarynski LE, Michael HM, Ferrell RE, Murphey-Corb MA, Swain GM, Patel BA, Andrews AM (2010) Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem Neurosci 1:49–64. https://doi.org/10.1021/cn900012y

    Article  CAS  PubMed  Google Scholar 

  43. Staal RGW, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346. https://doi.org/10.1038/nn1205

    Article  CAS  PubMed  Google Scholar 

  44. Sulzer D, Pothos EN (2000) Regulation of quantal size by presynaptic mechanisms. Rev Neurosci 11:159–212. https://doi.org/10.1515/REVNEURO.2000.11.2-3.159

    Article  CAS  PubMed  Google Scholar 

  45. Sun X, Gillis KD (2006) On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Anal Chem 78:2521–2525. https://doi.org/10.1021/ac052037d

    Article  CAS  PubMed  Google Scholar 

  46. Tseng Y, Chiang M, Huang T, Su K, Lane H, Lai Y (2010) A selective serotonin reuptake inhibitor, citalopram, inhibits collagen-induced platelet aggregation and activation. Thromb Res 126:517–523. https://doi.org/10.1016/j.thromres.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  47. Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee JK, Ober CK, Lindau M, Malliaras GG (2011) Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 23:184–188. https://doi.org/10.1002/adma.201100035

    Article  Google Scholar 

  48. Yao J, Gillis KD (2012) Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes. Analyst 137:2674. https://doi.org/10.1039/c2an35157a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao J, Liu XA, Gillis KD (2015) Two approaches for addressing electrochemical electrode arrays with reduced external connections. Anal Methods 7:5760–5766. https://doi.org/10.1039/C5AY00229J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Y, Fang Q, Drew A, Berberian KN, Almers W, Lindau M (2013) Rapid structural change in synaptosomal-associated protein 25 (SNAP25) precedes the fusion of single vesicles with the plasma membrane in live chromaffin cells. PNAS 110:14249–14254. https://doi.org/10.1073/pnas.1306699110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Brian Kim, Professor Gillis, and Dr. Xin Liu for support and advice, Joan S. Lenz for her excellent technical assistance, and Owasco Meat Co., Inc. for providing the bovine adrenal glands. Post-fabrication was performed in Cornell Nanofabrication Facility (CNF), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant ECCS-1542081). This work was supported by the National Institutes of Health (NIH) grants R01MH095046 and R43MH109212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Lindau.

Ethics declarations

Conflict of interest

M.L. is a partner and J.C.R. an employee of the company ExoCytronics, which will develop and commercialize the microchip array platform technology presented here. ExoCytronics has won an SBIR phase I award from the NIH, which is supporting the development of amperometry/FSCV microchip technology.

Additional information

This article is part of the special issue on Chromaffin Cells in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Delacruz, J.B., Ruelas, J.C. et al. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements. Pflugers Arch - Eur J Physiol 470, 113–123 (2018). https://doi.org/10.1007/s00424-017-2067-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2067-y

Keywords

Navigation