Skip to main content
Log in

Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48 ± 0.03 to 1.03 ± 0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75 ± 0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4 ± 2.9 % while DCA reduced nNADH by 21.4 ± 6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aasum E, Steigen T, Larsen T (1997) Stimulation of carbohydrate metabolism reduces hypothermia-induced calcium load in fatty acid-perfused rat hearts. J Mol Cell 534:527–534

    Google Scholar 

  2. Asfour H, Wengrowski AM, Jaimes R 3rd, Swift LM, Kay MW (2012) NADH fluorescence imaging of isolated biventricular working rabbit hearts. J Vis Exp 65:1–7

    Google Scholar 

  3. Ashruf JF, Coremans JM, Bruining HA, Ince C (1995) Increase of cardiac work is associated with decrease of mitochondrial NADH. Am J Physiol 269:H856–H862

    PubMed  CAS  Google Scholar 

  4. Ashruf JF, Coremans JM, Bruining HA, Ince C (1996) Mitochondrial NADH in the Langendorff rat heart decreases in response to increases in work: increase of cardiac work is associated with decrease of mitochondrial NADH. Adv Exp Med Biol 388:275–282

    Article  PubMed  CAS  Google Scholar 

  5. Bassenge E, Sommer O, Schwemmer M, Bünger R (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 279:H2431–H2438

    PubMed  CAS  Google Scholar 

  6. Bersin RM, Stacpoole PW (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Hear J 134:841–855

    Article  CAS  Google Scholar 

  7. Blinova K, Levine RL, Boja ES, Griffiths GL, Shi Z-D, Ruddy B, Balaban RS (2008) Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry 47:9636–9645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71:1024–1035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Bünger R, Mallet RT (1993) Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation. Biochim Biophys Acta Biomembr 1151:223–236

    Article  Google Scholar 

  10. Bünger R, Mallet RT, Hartman DA (1989) Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem 180:221–233

    Article  PubMed  Google Scholar 

  11. Chen W, London R, Murphy E, Steenbergen C (1998) Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rabbit heart. A 19F nuclear magnetic resonance study. Circ Res 83:898–907

    Article  PubMed  CAS  Google Scholar 

  12. Combs C (2001) a, Balaban RS. Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP). Biophys J 80:2018–2028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. De Hemptinne A, Marrannes R, Vanheel B (1983) Influence of organic acids on intracellular pH. Am J Physiol Cell Physiol 245:C178–C183

    Google Scholar 

  14. Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW, Efimov IR (2007) Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626

    Article  PubMed  Google Scholar 

  15. Gohil K, Jones DA (1983) A sensitive spectrophotometric assay for pyruvate dehydrogenase and oxoglutarate dehydrogenase complexes. Biosci Rep 3:1–9

    Article  PubMed  CAS  Google Scholar 

  16. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ (1996) Lactic acidosis during sepsis is related to increased pyruvate production. Not deficits in tissue oxygen availability. Ann Surg 224:97–102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gottlieb R, Magnus R (1904) Digitalis und Herzabeit. Nach Versuchen an uberlebenden Warmbluterherzen. Path Pharamakol 51:30–63

    Google Scholar 

  18. Hasenfuss G, Maier LS, Hermann H-P, Lüers C, Hünlich M, Zeitz O, Janssen PML, Pieske B (2002) Influence of pyruvate on contractile performance and Ca2+ cycling in isolated failing human myocardium. Circulation 105:194–199

    Article  PubMed  CAS  Google Scholar 

  19. Jackson VN, Halestrap AP (1996) The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2’,7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271:861–868

    Article  PubMed  CAS  Google Scholar 

  20. Jin H, Nass RD, Joudrey PJ, Lyon AR, Chemaly ER, Rapti K, Akar FG (2010) Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart. Biophys J 98:2063–2071

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Joubert F, Fales HM, Wen H, Combs CA, Balaban RS (2004) NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): applications to enzyme and mitochondrial reaction kinetics, in vitro. Biophys J 86:629–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kang YH, Mallet RT, Bünger R (1992) Coronary autoregulation and purine release in normoxic heart at various cytoplasmic phosphorylation potentials: disparate effects of adenosine. Pflugers Arch 421:188–199

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi K, Neely JR (1983) Effects of ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts. J Mol Cell Cardiol 15:359–367

    Article  PubMed  CAS  Google Scholar 

  24. Kuzmiak-Glancy S, Jaimes R, Wengrowski AM, Kay MW (2015) Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements. Exp Physiol. doi:10.1113/EP085042

    PubMed  PubMed Central  Google Scholar 

  25. Laughlin MR, Taylor J, Chesnick AS, DeGroot M, Balaban RS (1993) Pyruvate and lactate metabolism in the in vivo dog heart. Am J Physiol 264:H2068–H2079

    PubMed  CAS  Google Scholar 

  26. Laurita KR, Katra R, Wible B, Wan X, Koo MH (2003) Transmural heterogeneity of calcium handling in canine. Circ Res 92:668–675

    Article  PubMed  CAS  Google Scholar 

  27. Lewandowski ED, Johnston DL (1990) Reduced substrate oxidation in postischemic myocardium: 13C and 31P NMR analyses. Am J Physiol Hear Circ Physiol 258:H1357–H1365

    CAS  Google Scholar 

  28. Lewandowski ED, White LT (1995) Pyruvate dehydrogenase influences postischemic heart function. Circulation 91:2071–2079

    Article  PubMed  CAS  Google Scholar 

  29. Liedtke AJ (1981) Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23:321–336

    Article  PubMed  CAS  Google Scholar 

  30. Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948

    Article  PubMed  CAS  Google Scholar 

  31. Lloyd S, Brocks C, Chatham JC (2003) Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol 285:H163–H172

    Article  PubMed  CAS  Google Scholar 

  32. Lopaschuk GD, Wambolt RB, Barr RL (1993) An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264:135–144

    PubMed  CAS  Google Scholar 

  33. Mallet RT, Bunger R. Energetic modulation of cardiac inotropism and sarcoplasmic. Biochim Biophys Acta

  34. Mallet R, Hartman D, Bunger R (1990) Glucose requirement for postischemic recovery of perfused working heart. Eur J Biochem 188:481–493

    Article  PubMed  CAS  Google Scholar 

  35. Mallet RT, Sun J (1999) Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Cardiovasc Res 42:149–161

    Article  PubMed  CAS  Google Scholar 

  36. Masoud WGT, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, Lygate CA, Neubauer S, Clanachan AS, Lopaschuk GD (2014) Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res 101:30–38

    Article  PubMed  CAS  Google Scholar 

  37. McVeigh JJ, Lopaschuk GD (1990) Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 259:H1079–H1085

    PubMed  CAS  Google Scholar 

  38. Nasa Y, Ichihara K, Abiko Y (1990) Myocardial non-esterified fatty acids during normoxia and ischemia in Langendorff and working rat hearts. Jpn J Pharmacol 53:129–133

    Article  PubMed  CAS  Google Scholar 

  39. Patel TB, Olson MS (1984) Regulation of pyruvate dehydrogenase complex in ischemic rat heart. Am J Physiol 246:H858–H864

    PubMed  CAS  Google Scholar 

  40. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264:C761–C782

    PubMed  CAS  Google Scholar 

  41. Posnack NG, Brooks D, Chandra A, Jaimes R 3rd, Sarvazyan N, Kay MW. Physiological response of cardiac tissue to Bisphenol A: alterations in ventricular pressure and contractility. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00272.2015

  42. Posnack NG, Idrees R, Ding H, Jaimes R 3rd, Stybayeva G, Karabekian Z, Laflamme MA, Sarvazyan N (2015) Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes. PLoS One 10, e0121927

  43. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 268:H82–H91

    PubMed  CAS  Google Scholar 

  44. Schulze K, Duschek C, Lasley RD, Bünger R (2007) Adenosine enhances cytosolic phosphorylation potential and ventricular contractility in stunned guinea pig heart: receptor-mediated and metabolic protection. J Appl Physiol 102:1202–1213

    Article  PubMed  CAS  Google Scholar 

  45. Taniguchi M, Wilson C, Hunter CA, Pehowich DJ, Clanachan AS, Lopaschuk GD (2001) Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. Am J Physiol Heart Circ Physiol 280:H1762–H1769

    PubMed  CAS  Google Scholar 

  46. Torres CAA, Varian KD, Canan CH, Davis JP, Janssen PML (2013) The positive inotropic effect of pyruvate involves an increase in myofilament calcium sensitivity. PLoS One 8, e63608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Vincent G, Khairallah M, Bouchard B, Des RC (2003) Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem 242:89–99

    Article  PubMed  CAS  Google Scholar 

  48. Wahr JA, Olszanski D, Childs KF, Bolling SF (1996) Dichloroacetate enhanced myocardial functional recovery post-ischemia: ATP and NADH recovery. J Surg Res 63:220–224

    Article  PubMed  CAS  Google Scholar 

  49. Wengrowski AM, Kuzmiak-Glancy S, Jaimes R 3rd, Kay MW (2014) NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations. Am J Physiol Heart Circ Physiol 306:H529–H537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. White LT, O’Donnell JM, Griffin J, Lewandowski ED (1999) Cytosolic redox state mediates postischemic response to pyruvate dehydrogenase stimulation. Am J Physiol 277:H626–H634

    PubMed  CAS  Google Scholar 

  51. Whitehouse S, Cooper RH, Randle PJ (1974) Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 141:761–774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Zima AV, Kockskämper J, Mejia-Alvarez R, Blatter LA (2003) Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms. J Physiol 550:765–783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Jay H. Kramer and Dr. Brian Glancy for helpful discussions for determining PDH activity and Nate Serafino for technical assistance. This study was supported by NIH grant HL095828 (to MWK), NIH grant K99ES023477 (to NGP), and American Heart Association Postdoctoral Fellowship 14POST20490181 (to SKG).

Compliance with ethical standards

The authors declare that they have no conflict of interest. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the George Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Kay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimes, R., Kuzmiak-Glancy, S., Brooks, D.M. et al. Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate. Pflugers Arch - Eur J Physiol 468, 131–142 (2016). https://doi.org/10.1007/s00424-015-1717-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1717-1

Keywords

Navigation