Skip to main content

Advertisement

Log in

Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aperia A (2007) New roles for an old Na, K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52

    Article  CAS  PubMed  Google Scholar 

  2. Bagrov AY, Shapiro JI, Fedorova OV (2009) Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 61:9–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Berghoff RS, Geraci AS (1929) The influence of sodium chloride on blood pressure. IMJ 56:395–397

    CAS  Google Scholar 

  4. Berret E, Nehme B, Henry M, Toth K, Drolet G, Mouginot D (2013) Regulation of central Na+ detection requires the cooperative action of the Nax channel and a1 isoform of Na+/K+-ATPase in the Na+-sensor neuronal population. J Neurosci 33:3067–3078

    Article  CAS  PubMed  Google Scholar 

  5. Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323–332

    Article  CAS  PubMed  Google Scholar 

  6. Blaustein MP, Zhang J, Chen L, Hamilton BP (2006) How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 290:R514–R523

    Article  CAS  PubMed  Google Scholar 

  7. Boegehold MA, Kotchen TA (1991) Importance of dietary chloride for salt sensitivity of blood pressure. Hypertension 17:1158–1161

    Article  Google Scholar 

  8. Cahn F, Lubin M (1978) Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes and reticulocyte lysate. J Biol Chem 253:7798–7803

    CAS  PubMed  Google Scholar 

  9. Cao J, He L, Lin G, Hu C, Dong R, Zhang J, Zhu H, Hu Y, Wagner CR, He Q, Yang B (2014) Cap-dependent translation initiation factor, eIF4E, is the target for ouabain-mediated inhibition of HIF-1a. Biochem Pharmacol 89:20–30

    Article  CAS  PubMed  Google Scholar 

  10. Dahl LK (1960) Possible role of salt intake in the development of essential hypertension. In: Cottier P, Bock KD (eds) Essential hypertension. Springer, Berlin, pp 61–75

    Google Scholar 

  11. de la Sierra A, del Mar Lluch M, Coca A, Aguilera T, Giner V, Bragulat E, Urbano-Marquez A (1996) Fluid, ionic and hormonal changes induced by high salt intake in salt-sensitive and salt-resistant hypertensive patients. Clin Sci 91:155–161

    PubMed  Google Scholar 

  12. de Wardener HE, He FJ, MacGregor GA (2004) Plasma sodium and hypertension. Kidney Int 66:2454–2466

    Article  PubMed  Google Scholar 

  13. Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108:545–556

    Article  CAS  PubMed  Google Scholar 

  14. Farber SJ, Soberman RJ (1956) Total body water and total exchangeable sodium in edemous states due to cardiac, renal or hepatic disease. J Clin Invest 35:779–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY (2002) Endogenous ligand of a1 sodium pump, marinobufagenin, is a novel mediator of sodium chloride-dependent hypertension. Circulation 105:1122–1127

    Article  CAS  PubMed  Google Scholar 

  16. Fels J, Oberleithner H, Kusche-Vihorg K (2010) Menage a trois: aldosterone, sodium and nitric oxide in vascular endothelim. Biochim Biophys Acta 1802:1193–1202

    Article  CAS  PubMed  Google Scholar 

  17. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of d-opioid receptor signalling. Nature 506:191–196

    Article  CAS  PubMed  Google Scholar 

  18. Graff J, Kim D, Dobbin MM, Tsai L-H (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91:603–649

    Article  CAS  PubMed  Google Scholar 

  19. Grim CE, Luft FC, Miller JZ (1980) Racial differences in blood pressure in Evans County, Georgia: relationship to sodium and potassium intake and plasma renin activity. J Chron Dis 33:155–162

    Article  Google Scholar 

  20. Gundersen K (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev 86:564–600

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gutierrez-de-Teran H, Massink A, Rodriguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC (2013) The role of sodium ion binding site in the allosteric modulation of the A2A adenosine G protein-coupled receptor. Structure 21:2175–2185

    Article  CAS  PubMed  Google Scholar 

  22. Haloui M, Taurin S, Akimova OA, Guo D-F, Tremblay J, Dulin NO, Hamet P, Orlov SN (2007) Na+i-induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements. FEBS J 274:3257–3267

    Article  Google Scholar 

  23. Haloui M, Tremblay J, Seda O, Koltsova SV, Maksimov GV, Orlov SN, Hamet P (2013) Increased renal epithelial Na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats. Hypertension 62:731–737

    Article  CAS  PubMed  Google Scholar 

  24. Halterman JA, Kwon HM, Wamhoff BR (2012) Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). Am J Physiol Cell Physiol 302:C1–C8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    Article  CAS  PubMed  Google Scholar 

  26. He FJ, MacGregor GA (2012) Cardiovascular disease: salt and cardiovascular risk. Nat Rev Nephrol 8:134–136

    Article  CAS  PubMed  Google Scholar 

  27. He FJ, Markandu ND, Sagnella GA, de Wardener HE, MacGregor GA (2005) Plasma sodium: ignored and underestimated. Hypertension 45:98–102

    Article  CAS  PubMed  Google Scholar 

  28. Heizmann CW, Hunziker W (1991) Intracellular calcium-binding proteins: more sites than insights. TiBS 16:98–103

    CAS  PubMed  Google Scholar 

  29. Hiyama TY, Watanabe E, Okado H, Noda M (2004) The subfornical organ is the primary locus of sodium-level-sensing by Nax sodium channels for the control of salt-intake behavior. J Neurosci 24:9276–9281

    Article  CAS  PubMed  Google Scholar 

  30. Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, Noda M (2002) Nax channel involved in CNS sodium-level sensing. Nat Neurosci 5:511–512

    Article  CAS  PubMed  Google Scholar 

  31. Huang BS, Van Vliet BN, Leenen FH (2004) Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on high-salt diet. Am J Physiol Heart Circ Physiol 287:H1160–H1166

    Article  CAS  PubMed  Google Scholar 

  32. Ivanova LN, Archibasova VK, Shterental’ IS (1978) Sodium-depositing function of the skin in white rats. Fisiol Zh SSSR Im I M Sechenova 64:358–363

    CAS  Google Scholar 

  33. Jaitovich A, Bertorello AM (2010) Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta 1802:1140–1149

    Article  CAS  PubMed  Google Scholar 

  34. Jennings MD, Pavitt GD (2010) eIF5 is a dual function GAP and GDI for eukaryotic translational control. Small GTPases 1:118–123

    Article  PubMed Central  PubMed  Google Scholar 

  35. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244

    Article  CAS  PubMed  Google Scholar 

  36. Kawano Y, Yoshida K, Kawamura M, Yoshimi H, Ashida T, Abe H, Imanishi M, Kimura G, Kojima S, Kuramochi M (1992) Sodium and noradrenaline in cerebrospinal fluid and blood in salt-sensitive and non-salt-sensitive essential hypertension. Clin Exp Pharmacol Physiol 19:235–241

    Article  CAS  PubMed  Google Scholar 

  37. Klann E, Dever TE (2004) Biochemical mechanisms for translation regulation in synaptic plasticity. Nat Rev Neurosci 5:931–942

    Article  CAS  PubMed  Google Scholar 

  38. Koltsova SV, Shilov B, Burulina JG, Akimova OA, Haloui M, Kapilevich LV, Gusakova SV, Tremblay J, Hamet P, Orlov SN (2014) Transcriptomic changes triggered by hypoxia: evidence for HIF-1a-independent, [Na+]i/[K+]i-mediated excitation-transcription coupling . PLoS One 9:e110597

  39. Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, Orlov SN (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca2+i-independent excitation-transcription coupling. PLoS ONE 7:e38032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Korte S, Wiesinger A, Straeter AS, Peters W, Oberleithner H, Kusche-Vihorg K (2012) Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pfluger Arch-Eur J Physiol 463:269–278

    Article  CAS  Google Scholar 

  41. Kurtz TW, Morris RC (1983) Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 222:1139–1141

    Article  CAS  PubMed  Google Scholar 

  42. Lamy CM, Sallin O, Loussert C, Chatton J-Y (2012) Sodium sensing in neurones with a dendrimer-based nanoprobe. ACS Nano 6:1176–1187

    Article  CAS  PubMed  Google Scholar 

  43. Lanctôt C, Cheutin T, Gremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  Google Scholar 

  44. Landsberg JW, Yuan XJ (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44–50

    CAS  PubMed  Google Scholar 

  45. Ledbetter MLS, Lubin M (1977) Control of protein synthesis in human fibroblasts by intracellular potassium. Exp Cell Res 105:223–236

    Article  CAS  PubMed  Google Scholar 

  46. Leenen FHH (2010) The central role of the brain aldosterone-“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta 1802:1132–1139

    Article  CAS  PubMed  Google Scholar 

  47. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Xie Z (2010) The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter traficking. Biochim Biophys Acta 1802:1237–1245

    Article  CAS  PubMed  Google Scholar 

  49. Lubin M, Ennis HL (1964) On the role of intracellular potassium in protein synthesis. Biochim Biophys Acta 80:614–631

    CAS  PubMed  Google Scholar 

  50. Ma H, Groth RD, Wheeler DG, Barrett CF, Tsien RW (2011) Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci Res 70:2–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Machnik A, Neuhofer W, Jantsch J, Dahlman A, Tammela T, Machura K, Park J-K, Beck F-X, Muller DN, Derer W, Goss J, Ziomer A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt K-U, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552

    Article  CAS  PubMed  Google Scholar 

  52. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–512

    CAS  PubMed  Google Scholar 

  53. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Phys 104:288–295

    CAS  Google Scholar 

  54. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85:679–715

    Article  CAS  PubMed  Google Scholar 

  55. Muntzel M, Drüeke T (1992) A comprehensive review of the salt and blood pressure relationship. Am J Hypertens 5:1S–42S

    Article  CAS  PubMed  Google Scholar 

  56. Murphy KT, Nielsen OB, Clausen T (2008) Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle. Exp Physiol 93:1249–1262

    Article  CAS  PubMed  Google Scholar 

  57. Noda M (2006) The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain. Neuroscientist 12:80–91

    Article  CAS  PubMed  Google Scholar 

  58. Oberleithner H (2012) Two barriers for sodium in vascular endothelium? Ann Med 44:S143–S148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Oberleithner H, Kusche-Vihrog K, Schillers H (2010) Endothelial cells as vascular salt sensor. Kidney Int 77:490–494

    Article  CAS  PubMed  Google Scholar 

  60. Oberleithner H, Peters W, Kusche-Vihorg K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pfluger Arch-Eur J Physiol 462:519–528

    Article  CAS  Google Scholar 

  61. Oberleithner H, Rietmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 104:16281–16286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Oda T, Makino K, Yamashita I, Namba K, Maeda Y (2001) Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys J 80:841–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Okamura Y, Dizon JE (2011) Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology 26:6–13

    Article  CAS  PubMed  Google Scholar 

  64. Ono Y, Ojimam K, Torii F, Takaya E, Doi N, Nakagawa K, Hata S, Abe K, Sorimachi H (2010) Skeletal muscle-specific calpain is an intracellular Na+-dependent protease. J Biol Chem 285:22986–22998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Orlov SN, Hamet P (2006) Intracellular monovalent ions as second messengers. J Membr Biol 210:161–172

    Article  CAS  PubMed  Google Scholar 

  66. Orlov SN, Mongin AA (2007) Salt sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293:H2039–H2053

    Article  CAS  PubMed  Google Scholar 

  67. Orlov SN, Taurin S, Thorin-Trescases N, Dulin NO, Tremblay J, Hamet P (2000) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis. Hypertension 35:1062–1068

    Article  CAS  PubMed  Google Scholar 

  68. Orlov SN, Taurin S, Tremblay J, Hamet P (2001) Inhibition of Na+, K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling. J Hypertens 19:1559–1565

    Article  CAS  PubMed  Google Scholar 

  69. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    Article  CAS  PubMed  Google Scholar 

  70. Pavlov TS, Levchenko V, O’Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW, Staruschenko A (2013) Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol 24:1053–1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  CAS  PubMed  Google Scholar 

  72. Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80:135–172

    CAS  PubMed  Google Scholar 

  73. Reyes RC, Verkhratsky A, Parpura V (2013) TRPC1-mediated Ca2+ and Na+ signaling in astroglia: differential filtering of extracellular cations. Cell Calcium 54:120–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rose CR, Konnerth A (2001) NMDA-receptor-mediated Na+ signals in spines and dendrites. J Neurosci 21:4207–4214

    CAS  PubMed  Google Scholar 

  75. Santana LF (2008) NFAT-dependent excitation-transcription coupling in heart. Circ Res 103:681–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Schaffhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, Wagner H, Luft FC, Eckardt KU (2007) Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol 292:F1490–F1500

    Article  Google Scholar 

  77. Schmidlin O, Tanaka M, Bollen AW, Yi SL, Morris RB (2005) Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension 45:867–873

    Article  CAS  PubMed  Google Scholar 

  78. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293:C509–C536

    Article  CAS  PubMed  Google Scholar 

  79. Simpson FO (1995) Blood pressure and sodium intake. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management. Raven, New York, pp 273–281

    Google Scholar 

  80. Taurin S, Dulin NO, Pchejetski D, Grygorczyk R, Tremblay J, Hamet P, Orlov SN (2002) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J Physiol 543:835–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Taurin S, Seyrantepe V, Orlov SN, Tremblay T-L, Thibaut P, Bennett MR, Hamet P, Pshezhetsky AV (2002) Proteome analysis and functional expression identify mortalin as an anti-apoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 91:915–922

    Article  CAS  PubMed  Google Scholar 

  82. Titze J (2008) Water-free Na+ retention: interaction with hypertension and tissue hydration. Blood Purif 26:95–99

    Article  CAS  PubMed  Google Scholar 

  83. Titze J (2014) Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens 23:101–105

    Article  CAS  PubMed  Google Scholar 

  84. Titze J, Dahlmann A, Lerchl K, Kopp C, Rakova N, Schroder A, Luft FC (2014) Spooky sodium balance. Kidney Int 85:759–767

    Article  CAS  PubMed  Google Scholar 

  85. Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, Kirsch KA, Hilgers KF (2002) Reduced osmotically inactive Na+ storage capacity and hypertension in the Dahl model. Am J Physiol Ren Physiol 283:F134–F141

    CAS  Google Scholar 

  86. Titze J, Machnik A (2010) Sodium sensing in interstitium and relationship to hypertension. Curr Opin Nephrol Hypertens 19:385–392

    Article  PubMed  Google Scholar 

  87. Titze J, Ritz E (2009) Salt and its effect on blood pressure and target organ damage: new pieces in an old puzzle. J Nephrol 22:177–189

    CAS  PubMed  Google Scholar 

  88. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF (2004) Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 287:H203–H208

    Article  CAS  PubMed  Google Scholar 

  89. Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H (2004) Effect of high-NaCl and high-KCl diet on hepatic Na+ - and K+-receptor sensitivity and NKCC1 expression in rats. Am J Physiol Regul Integr Comp Physiol 286:R591–R596

    Article  CAS  PubMed  Google Scholar 

  90. Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832–833

    Article  CAS  PubMed  Google Scholar 

  91. Verkhratsky A, Noda M, Parpura V, Kirischuk S (2013) Sodium fluxes and astroglial function. Adv Exp Med Biol 961:295–305

    Article  CAS  PubMed  Google Scholar 

  92. Wang Q, Domenighetti AA, Pedrazzini T, Burnier M (2005) Potassium supplementation reduces cardiac and renal hypertrophy independent of blood pressure in DOCA/salt mice. Hypertension 46:547–554

    Article  CAS  PubMed  Google Scholar 

  93. Whitescarver SA, Ott CE, Jackson BA, Guthrie CP, Kotchen TA (1984) Salt-sensitive hypertension: contribution of chloride. Science 223:1430–1432

    Article  CAS  PubMed  Google Scholar 

  94. Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschnann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck F-X, Muller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123:2803–2815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Wyss JM, Liumsirichargen M, Sripajrojthikon W, Brown D, Gist R, Oparil S (1987) Exacerbration of hypertension by high chloride, moderate sodium diet in the salt-sensitive spontaneously hypertensive rats. Hypertension 9(suppl III):171–175

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research, the Kidney Foundation of Canada, the Russian Foundation for Fundamental Research, and the Ministry of Science and Education of the Russian Federation. The manuscript was edited by Ovid Da Silva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, S.N., Hamet, P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch - Eur J Physiol 467, 489–498 (2015). https://doi.org/10.1007/s00424-014-1650-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1650-8

Keywords

Navigation