Skip to main content

Advertisement

Log in

Nerve injury induces a Gem-GTPase-dependent downregulation of P/Q-type Ca2+ channels contributing to neurite plasticity in dorsal root ganglion neurons

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Small RGK GTPases, Rad, Gem, Rem1, and Rem2, are potent inhibitors of high-voltage-activated (HVA) Ca2+ channels expressed in heterologous expression systems. However, the role of this regulation has never been clearly demonstrated in the nervous system. Using transcriptional analysis, we show that peripheral nerve injury specifically upregulates Gem in mice dorsal root ganglia. Following nerve injury, protein expression was increased in ganglia and peripheral nerve, mostly under its phosphorylated form. This was confirmed in situ and in vitro in dorsal root ganglia sensory neurons. Knockdown of endogenous Gem, using specific small-interfering RNA (siRNA), increased the HVA Ca2+ current only in the large-somatic-sized neurons. Combining pharmacological analysis of the HVA Ca2+ currents together with Gem siRNA-transfection of larger sensory neurons, we demonstrate that only the P/Q-type Ca2+ channels were enhanced. In vitro analysis of Gem affinity to various CaVβx-CaV2.x complexes and immunocytochemical studies of Gem and CaVβ expression in sensory neurons suggest that the specific inhibition of the P/Q channels relies on both the regionalized upregulation of Gem and the higher sensitivity of the endogenous CaV2.1-CaVβ4 pair in a subset of sensory neurons including the proprioceptors. Finally, pharmacological inhibition of P/Q-type Ca2+ current reduces neurite branching of regenerating axotomized neurons. Taken together, the present results indicate that a Gem-dependent P/Q-type Ca2+ current inhibition may contribute to general homeostatic mechanisms following a peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cacnβ/CaVβ:

Calcium channel β subunit

DRG:

Dorsal root ganglia

Gem:

Gene overexpressed in skeletal muscle

HVA:

High-voltage-activated

LVA:

Low-voltage-activated

Polr2j:

Polymerase (RNA) II polypeptide J

siRNA:

Small-interfering RNA

Rad:

Ras-related protein

Rem1:

rad and gem related GTP binding protein 1

Rem2:

rad and gem related GTP binding protein 2

References

  1. Andre S, Puech-Mallie S, Desmadryl G, Valmier J, Scamps F (2003) Axotomy differentially regulates voltage-gated calcium currents in mice sensory neurones. Neuroreport 14(1):147–150

    Article  CAS  PubMed  Google Scholar 

  2. Andre S, Boukhaddaoui H, Campo B, Al-Jumaily M, Mayeux V, Greuet D, Valmier J, Scamps F (2003) Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol 90(6):3764–3773

    Article  CAS  PubMed  Google Scholar 

  3. Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13(3):298–307

    Article  CAS  PubMed  Google Scholar 

  4. Baccei ML, Kocsis JD (2000) Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons. J Neurophysiol 83(4):2227–2238

    CAS  PubMed  Google Scholar 

  5. Bachy I, Franck MC, Li L, Abdo H, Pattyn A, Ernfors P (2011) The transcription factor Cux2 marks development of an A-delta sublineage of TrkA sensory neurons. Dev Biol 360(1):77–86

    CAS  PubMed  Google Scholar 

  6. Bauer CS, Tran-Van-Minh A, Kadurin I, Dolphin AC (2010) A new look at calcium channel alpha2delta subunits. Curr Opin Neurobiol 20(5):563–571

    Article  CAS  PubMed  Google Scholar 

  7. Beguin P, Mahalakshmi RN, Nagashima K, Cher DH, Takahashi A, Yamada Y, Seino Y, Hunziker W (2005) 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity. J Cell Sci 118(Pt 9):1923–1934

    Article  CAS  PubMed  Google Scholar 

  8. Beguin P, Nagashima K, Gonoi T, Shibasaki T, Takahashi K, Kashima Y, Ozaki N, Geering K, Iwanaga T, Seino S (2001) Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411(6838):701–706

    Article  CAS  PubMed  Google Scholar 

  9. Bolstad BM, Collin F, Simpson KM, Irizarry RA, Speed TP (2004) Experimental design and low-level analysis of microarray data. Int Rev Neurobiol 60:25–58

    Article  CAS  PubMed  Google Scholar 

  10. Boudes M, Pieraut S, Valmier J, Carroll P, Scamps F (2008) Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism. J Neurosci Methods 170(2):204–211

    Article  CAS  PubMed  Google Scholar 

  11. Charnet P, Scamps F, Rousset M, Menard C, Bellis M, Cens T (2013) RGK small GTPases and Regulation of Cav2 channels. In: Stephens G, Mochida S (eds) Modulation of presynaptic calcium channels. Springer, Dordrecht

    Google Scholar 

  12. Chen H, Puhl HL 3rd, Niu SL, Mitchell DC, Ikeda SR (2005) Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density. J Neurosci 25(42):9762–9772

    Article  CAS  PubMed  Google Scholar 

  13. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  14. Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA (2008) The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 20(2):292–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dubreuil AS, Boukhaddaoui H, Desmadryl G, Martinez-Salgado C, Moshourab R, Lewin GR, Carroll P, Valmier J, Scamps F (2004) Role of T-type calcium current in identified d-hair mechanoreceptor neurons studied in vitro. J Neurosci 24(39):8480–8484

    Article  CAS  PubMed  Google Scholar 

  16. Enes J, Langwieser N, Ruschel J, Carballosa-Gonzalez MM, Klug A, Traut MH, Ylera B, Tahirovic S, Hofmann F, Stein V et al (2010) Electrical activity suppresses axon growth through Ca(v)1.2 channels in adult primary sensory neurons. Curr Biol 20(13):1154–1164

    Article  CAS  PubMed  Google Scholar 

  17. Fan M, Buraei Z, Luo HR, Levenson-Palmer R, Yang J (2010) Direct inhibition of P/Q-type voltage-gated Ca2+ channels by Gem does not require a direct Gem/Cavbeta interaction. Proc Natl Acad Sci U S A 107(33):14887–14892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Finlin BS, Crump SM, Satin J, Andres DA (2003) Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci U S A 100(24):14469–14474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Finlin BS, Shao H, Kadono-Okuda K, Guo N, Andres DA (2000) Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases. Biochem J 347(Pt 1):223–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Finlin BS, Mosley AL, Crump SM, Correll RN, Ozcan S, Satin J, Andres DA (2005) Regulation of L-type Ca2+ channel activity and insulin secretion by the Rem2 GTPase. J Biol Chem 280(51):41864–41871

    Article  CAS  PubMed  Google Scholar 

  21. Ghiretti AE, Kenny K, Marr MT 2nd, Paradis S (2013) CaMKII-dependent phosphorylation of the GTPase Rem2 is required to restrict dendritic complexity. J Neurosci 33(15):6504–6515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Heinke B, Balzer E, Sandkuhler J (2004) Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 19(1):103–111

    Article  CAS  PubMed  Google Scholar 

  23. Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, Dolmetsch RE (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci 16(2):201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lawson S (1992) Morphological and biochemical cell types of sensory neurons. In: Scott S (ed) Sensory neurons. Diversity, development, and plasticity. Oxford University Press, New York, pp 27–59

    Google Scholar 

  25. Leone A, Mitsiades N, Ward Y, Spinelli B, Poulaki V, Tsokos M, Kelly K (2001) The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma. Oncogene 20(25):3217–3225

    Article  CAS  PubMed  Google Scholar 

  26. Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P (2009) RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 23(8):2627–2638

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Cao XH, Chen SR, Han HD, Lopez-Berestein G, Sood AK, Pan HL (2012) Up-regulation of Cavbeta3 subunit in primary sensory neurons increases voltage-activated Ca2+ channel activity and nociceptive input in neuropathic pain. J Biol Chem 287(8):6002–6013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lucas O, Hilaire C, Delpire E, Scamps F (2012) KCC3-dependent chloride extrusion in adult sensory neurons. Mol Cell Neurosci 50(3–4):211–220

    Article  CAS  PubMed  Google Scholar 

  29. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL (2001) Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 21(6):1868–1875

    CAS  PubMed  Google Scholar 

  30. Luvisetto S, Marinelli S, Panasiti MS, D'Amato FR, Fletcher CF, Pavone F, Pietrobon D (2006) Pain sensitivity in mice lacking the Ca(v)2.1alpha1 subunit of P/Q-type Ca2+ channels. Neuroscience 142(3):823–832

    Article  CAS  PubMed  Google Scholar 

  31. Maguire J, Santoro T, Jensen P, Siebenlist U, Yewdell J, Kelly K (1994) Gem: an induced, immediate early protein belonging to the Ras family. Science 265(5169):241–244

    Article  CAS  PubMed  Google Scholar 

  32. Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Beguin P (2007) Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by calmodulin and predicted serine phosphorylations. Traffic 8(9):1150–1163

    Article  CAS  PubMed  Google Scholar 

  33. Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Beguin P (2007) Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 8(9):1164–1178

    Article  CAS  PubMed  Google Scholar 

  34. Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8(2):114–127

    Article  CAS  PubMed  Google Scholar 

  35. Martin DE, Demougin P, Hall MN, Bellis M (2004) Rank Difference Analysis of Microarrays (RDAM), a novel approach to statistical analysis of microarray expression profiling data. BMC Bioinforma 5:148

    Article  Google Scholar 

  36. McCallum JB, Wu HE, Tang Q, Kwok WM, Hogan QH (2011) Subtype-specific reduction of voltage-gated calcium current in medium-sized dorsal root ganglion neurons after painful peripheral nerve injury. Neuroscience 179:244–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Michaelevski I, Segal-Ruder Y, Rozenbaum M, Medzihradszky KF, Shalem O, Coppola G, Horn-Saban S, Ben-Yaakov K, Dagan SY, Rishal I et al (2010) Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal 3(130):ra53

    Article  PubMed Central  PubMed  Google Scholar 

  38. Murakami M, Nakagawasai O, Suzuki T, Mobarakeh II, Sakurada Y, Murata A, Yamadera F, Miyoshi I, Yanai K, Tan-No K et al (2004) Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel alpha 1 subunits in the dorsal horn of spinal cord in mice. Brain Res 1024(1–2):122–129

    Article  CAS  PubMed  Google Scholar 

  39. Nilsson A, Moller K, Dahlin L, Lundborg G, Kanje M (2005) Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAI-1 on regeneration. Brain Res Mol Brain Res 136(1–2):65–74

    Article  CAS  PubMed  Google Scholar 

  40. Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC, Zhu L, Brass LF, Chen C, Greenberg ME (2007) An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53(2):217–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pieraut S, Lucas O, Sangari S, Sar C, Boudes M, Bouffi C, Noel D, Scamps F (2011) An autocrine neuronal interleukin-6 loop mediates chloride accumulation and NKCC1 phosphorylation in axotomized sensory neurons. J Neurosci 31(38):13516–13526

    Article  CAS  PubMed  Google Scholar 

  42. Pieraut S, Laurent-Matha V, Sar C, Hubert T, Mechaly I, Hilaire C, Mersel M, Delpire E, Valmier J, Scamps F (2007) NKCC1 phosphorylation stimulates neurite growth of injured adult sensory neurons. J Neurosci 27(25):6751–6759

    Article  CAS  PubMed  Google Scholar 

  43. Raivich G, Makwana M (2007) The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Res Rev 53(2):287–311

    Article  CAS  PubMed  Google Scholar 

  44. Reynet C, Kahn CR (1993) Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans. Science 262(5138):1441–1444

    Article  CAS  PubMed  Google Scholar 

  45. Sann SB, Xu L, Nishimune H, Sanes JR, Spitzer NC (2008) Neurite outgrowth and in vivo sensory innervation mediated by a Ca(V)2.2-laminin beta 2 stop signal. J Neurosci 28(10):2366–2374

    Article  CAS  PubMed  Google Scholar 

  46. Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 445:639–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Seu L, Pitt GS (2006) Dose-dependent and isoform-specific modulation of Ca2+ channels by RGK GTPases. J Gen Physiol 128(5):605–613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77(5):627–638

    Article  PubMed  Google Scholar 

  49. Vanegas H, Schaible H (2000) Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85(1–2):9–18

    Article  CAS  PubMed  Google Scholar 

  50. Wang HG, Wang C, Pitt GS (2011) Rem2-targeted shRNAs reduce frequency of miniature excitatory postsynaptic currents without altering voltage-gated Ca(2)(+) currents. PLoS One 6(9):e25741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wang Y, Cheng X, Zhou Z, Wu H, Long L, Gu X, Xu G (2012) Increased expression of Gem after rat sciatic nerve injury. J Mol Histol 44(1):27–36

    Article  CAS  PubMed  Google Scholar 

  52. Ward Y, Spinelli B, Quon MJ, Chen H, Ikeda SR, Kelly K (2004) Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity. Mol Cell Biol 24(2):651–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 18(16):6319–6330

    CAS  PubMed  Google Scholar 

  54. Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH et al (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99(12):8360–8365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yaksh TL (2006) Calcium channels as therapeutic targets in neuropathic pain. J Pain 7(1 Suppl 1):S13–S30

    Article  CAS  PubMed  Google Scholar 

  56. Yang T, Colecraft HM (2013) Regulation of voltage-dependent calcium channels by RGK proteins. Biochim Biophys Acta 1828(7):1644–1654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yang T, Puckerin A, Colecraft HM (2012) Distinct RGK GTPases differentially use alpha1- and auxiliary beta-binding-dependent mechanisms to inhibit CaV1.2/CaV2.2 channels. PLoS One 7(5):e37079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut National de la Santé et la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Association contre les Myopathies (AFM), and EMBO Long-Term Fellowship (MB). We thank the regional imaging platform RIO and the experimental histology platform RHEM for the technical assistance.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Scamps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scamps, F., Sangari, S., Bowerman, M. et al. Nerve injury induces a Gem-GTPase-dependent downregulation of P/Q-type Ca2+ channels contributing to neurite plasticity in dorsal root ganglion neurons. Pflugers Arch - Eur J Physiol 467, 351–366 (2015). https://doi.org/10.1007/s00424-014-1520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1520-4

Keywords

Navigation