Skip to main content
Log in

Adrenergic signaling in heart failure: a balance of toxic and protective effects

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Heart failure with reduced ejection fraction involves activation of the sympathetic nervous system and chronic hyperactivation of the sympatho-adrenergic receptors (ARs) β-ARs and α1-ARs, which are thought to be cardiotoxic and worsen pathological remodeling and function. Concurrently, the failing heart manifests significant decreases in sympathetic nerve terminal density, decreased cardiac norepinephrine levels, and marked downregulation of β-AR abundance and signaling. Thus, a state of both feast and famine coexist with respect to the adrenergic state in heart failure. For the failing heart, the hyperadrenergic state is toxic. However, the role of hypoadrenergic mechanisms in the pathophysiology of heart failure is less clear. Cardiotoxic effects are known to arise from the β1-AR subtype, and use of β-AR blockers is a cornerstone of current heart failure therapy. However, cardioprotective effects arise from the β2-AR subtype that counteract hyperactive β1-AR signaling, but unfortunately, β2-AR cardioprotective signaling in heart failure is inhibited by β-AR blocker therapy. In contrast to current dogma, recent research shows β1-AR signaling can also be cardioprotective. Moreover, for some forms of heart failure, β2-AR signaling is cardiotoxic. Thus for both β-AR subtypes, there is a balance between cardiotoxic versus cardioprotective effects. In heart failure, stimulation of α1-ARs is widely thought to be cardiotoxic. However, also contrary to current dogma, recent research shows that α1-AR signaling is cardioprotective. Taken together, recent research identifies cardioprotective signaling arising from β1-AR, β2-AR, and α1-ARs. A goal for future therapies will to harness the protective effects of AR signaling while minimizing cardiotoxic effects. The trajectory of heart failure therapy changed radically from the previous and intuitive use of sympathetic agonists, which unfortunately resulted in greater mortality, to the current use of β-AR blockers, which initially seemed counterintuitive. As a cautionary note, if the slow adoption of beta-blocker therapy in heart failure is any guide, then new treatment strategies, especially counterintuitive therapies involving stimulating β-AR and α1-AR signaling, may take considerable time to develop and gain acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ALLHAT Collaborative Research Group (2000) Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 283:1967--75

    Google Scholar 

  2. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  3. Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, Talan MI (2004) Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110:1083–1090

    CAS  PubMed  Google Scholar 

  4. Andersen GG, Qvigstad E, Schiander I, Aass H, Osnes JB, Skomedal T (2002) Alpha(1)-AR-induced positive inotropic response in heart is dependent on myosin light chain phosphorylation. Am J Physiol Heart Circ Physiol 283:H1471–H1480

    CAS  PubMed  Google Scholar 

  5. Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920

    CAS  PubMed  Google Scholar 

  6. Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C, Singh K, Colucci W, Bristow MR, Port DJ (2000) Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 32:817–830

    CAS  PubMed  Google Scholar 

  7. Bohm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M et al (1994) Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26:133–149

    CAS  PubMed  Google Scholar 

  8. Bohm M, Reiger B, Schwinger RH, Erdmann E (1994) cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 28:1713–1719

    CAS  PubMed  Google Scholar 

  9. Boivin B, Lavoie C, Vaniotis G, Baragli A, Villeneuve LR, Ethier N, Trieu P, Allen BG, Hebert TE (2006) Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 71:69–78

    CAS  PubMed  Google Scholar 

  10. Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    CAS  PubMed  Google Scholar 

  11. Bristow MR, Feldman AM, Adams KF Jr, Goldstein S (2003) Selective versus nonselective beta-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail 9:444–453

    CAS  PubMed  Google Scholar 

  12. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  13. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    CAS  PubMed  Google Scholar 

  14. Bristow MR, Krause-Steinrauf H, Nuzzo R, Liang CS, Lindenfeld J, Lowes BD, Hattler B, Abraham WT, Olson L, Krueger S, Thaneemit-Chen S, Hare JM, Loeb HS, Domanski MJ, Eichhorn EJ, Zelis R, Lavori P (2004) Effect of baseline or changes in adrenergic activity on clinical outcomes in the beta-blocker evaluation of survival trial. Circulation 110:1437–1442

    CAS  PubMed  Google Scholar 

  15. Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    CAS  PubMed  Google Scholar 

  16. Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    CAS  PubMed  Google Scholar 

  17. Brown JH, Buxton IL, Brunton LL (1985) Alpha 1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537

    CAS  PubMed  Google Scholar 

  18. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG (2010) Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 3:92–100

    PubMed  Google Scholar 

  19. Chaulet H, Lin F, Guo J, Owens WA, Michalicek J, Kesteven SH, Guan Z, Prall OW, Mearns BM, Feneley MP, Steinberg SF, Graham RM (2006) Sustained augmentation of cardiac alpha1A-adrenergic drive results in pathological remodeling with contractile dysfunction, progressive fibrosis and reactivation of matricellular protein genes. J Mol Cell Cardiol 40:540–552

    CAS  PubMed  Google Scholar 

  20. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179

    CAS  PubMed  Google Scholar 

  21. Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451

    CAS  PubMed  Google Scholar 

  22. Chidsey CA, Braunwald E, Morrow AG, Mason DT (1963) Myocardial norepinephrine concentration in man. Effects of reserpine and of congestive heart failure. N Engl J Med 269:653–658

    CAS  PubMed  Google Scholar 

  23. Civantos Calzada B, Aleixandre de Artinano A (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44:195–208

    CAS  PubMed  Google Scholar 

  24. Cohn JN (1993) The Vasodilator-Heart Failure Trials (V-HeFT). Mechanistic data from the VA Cooperative Studies. Introduction. Circulation 87:VI1–VI4

    CAS  PubMed  Google Scholar 

  25. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    CAS  PubMed  Google Scholar 

  26. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ, Investigators M (2003) Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 5:659–667

    CAS  PubMed  Google Scholar 

  27. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    CAS  PubMed  Google Scholar 

  28. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    CAS  PubMed  Google Scholar 

  29. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM (1998) Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 32:948–954

    PubMed  Google Scholar 

  30. de Man F (2014) Right Heart Failure. Pflugers Arch, Eur J Physiol

  31. Deng XF, Sculptoreanu A, Mulay S, Peri KG, Li JF, Zheng WH, Chemtob S, Varma DR (1998) Crosstalk between alpha-1A and alpha-1B adrenoceptors in neonatal rat myocardium: implications in cardiac hypertrophy. J Pharmacol Exp Ther 286:489–496

    CAS  PubMed  Google Scholar 

  32. DeWire SM, Violin JD (2011) Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res 109:205–216

    CAS  PubMed  Google Scholar 

  33. Di Salvo TG, Mathier M, Semigran MJ, Dec GW (1995) Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 25:1143–1153

    PubMed  Google Scholar 

  34. Du XJ, Fang L, Gao XM, Kiriazis H, Feng X, Hotchkin E, Finch AM, Chaulet H, Graham RM (2004) Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol 37:979–987

    CAS  PubMed  Google Scholar 

  35. Du XJ, Gao XM, Kiriazis H, Moore XL, Ming Z, Su Y, Finch AM, Hannan RA, Dart AM, Graham RM (2006) Transgenic alpha1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc Res 71:735–743

    CAS  PubMed  Google Scholar 

  36. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96:7059–7064

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Fajardo G, Zhao M, Urashima T, Farahani S, Hu DQ, Reddy S, Bernstein D (2013) Deletion of the beta2-adrenergic receptor prevents the development of cardiomyopathy in mice. J Mol Cell Cardiol 63:155–164

    CAS  PubMed  Google Scholar 

  38. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Felker GM, O’Connor CM (2001) Inotropic therapy for heart failure: an evidence-based approach. Am Heart J 142:393–401

    CAS  PubMed  Google Scholar 

  40. Gambassi G, Spurgeon HA, Ziman BD, Lakatta EG, Capogrossi MC (1998) Opposing effects of alpha 1-adrenergic receptor subtypes on Ca2+ and pH homeostasis in rat cardiac myocytes. Am J Physiol 274:H1152–H1162

    CAS  PubMed  Google Scholar 

  41. Gladden JD, Linke WL, Redfeld M (2014) Diastolic heart failure. Pflugers Arch, Eur J Physiol

  42. Greyson CR (2008) Pathophysiology of right ventricular failure. Crit Care Med 36:S57–S65

    PubMed  Google Scholar 

  43. Grupp IL, Lorenz JN, Walsh RA, Boivin GP, Rindt H (1998) Overexpression of alpha1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275:H1338–H1350

    CAS  PubMed  Google Scholar 

  44. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    CAS  PubMed  Google Scholar 

  45. Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J 4:2881–2889

    CAS  PubMed  Google Scholar 

  46. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, Indolfi C, Rimoldi O (2000) Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101:689–694

    CAS  PubMed  Google Scholar 

  47. Himura Y, Felten SY, Kashiki M, Lewandowski TJ, Delehanty JM, Liang CS (1993) Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation 88:1299–1309

    CAS  PubMed  Google Scholar 

  48. Huang Y, Wright CD, Merkwan CL, Baye NL, Liang Q, Simpson PC, O’Connell TD (2007) An alpha1A-adrenergic-extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation 115:763–772

    CAS  PubMed  Google Scholar 

  49. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, American College of Cardiology F, American Heart A (2009) 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol 53:e1–e90

    PubMed  Google Scholar 

  50. Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271:13609–13615

    CAS  PubMed  Google Scholar 

  51. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 55:2212–2221

    PubMed  Google Scholar 

  52. Jeacocke SA, England PJ (1980) Phosphorylation of a myofibrillar protein of Mr 150 000 in perfused rat heart, and the tentative indentification of this as C-protein. FEBS Lett 122:129–132

    CAS  PubMed  Google Scholar 

  53. Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC (2009) {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2:654–663

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Jensen B, Swigart PM, Laden M, DeMarco T, Hoopes C, Simpson PC (2009) The alpha-1D is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J Am Coll Cardiol 54:1137–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Jones CJ, DeFily DV, Patterson JL, Chilian WM (1993) Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87:1264–1274

    CAS  PubMed  Google Scholar 

  56. Kannel WB, Belanger AJ (1991) Epidemiology of heart failure. Am Heart J 121:951–957

    CAS  PubMed  Google Scholar 

  57. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, Rockman HA (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A 105:14555–14560

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kimura K, Kanazawa H, Ieda M, Kawaguchi-Manabe H, Miyake Y, Yagi T, Arai T, Sano M, Fukuda K (2010) Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci 156:27–35

    CAS  PubMed  Google Scholar 

  59. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150

    PubMed  Google Scholar 

  60. Konstantinou DM, Chatzizisis YS, Giannoglou GD (2013) Pathophysiology-based novel pharmacotherapy for heart failure with preserved ejection fraction. Pharmacol Ther 140:156–166

    CAS  PubMed  Google Scholar 

  61. Kreusser MM, Buss SJ, Krebs J, Kinscherf R, Metz J, Katus HA, Haass M, Backs J (2008) Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol 44:380–387

    CAS  PubMed  Google Scholar 

  62. Kruger M, Linke WA (2006) Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27:435–444

    PubMed  Google Scholar 

  63. Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23:1793–1800

    CAS  PubMed  Google Scholar 

  64. Lee GJA, Yan L, Vatner DE, Vatner SF (2013) β-Adrenergic receptor signaling in heart failure cardiac remodeling. Springer, pp. 3-30

  65. Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, Hebert TE, Rindt H (2001) Cardiac-directed overexpression of wild-type alpha1B-adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 281:H931–H938

    CAS  PubMed  Google Scholar 

  66. Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89:343–350

    CAS  PubMed  Google Scholar 

  67. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    CAS  PubMed  Google Scholar 

  68. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    PubMed  Google Scholar 

  69. Mann DL, Kent RL, Parsons B, Gt C (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    CAS  PubMed  Google Scholar 

  70. McCloskey DT, Turnbull L, Swigart P, O’Connell TD, Simpson PC, Baker AJ (2003) Abnormal myocardial contraction in alpha(1A)- and alpha(1B)-adrenoceptor double-knockout mice. J Mol Cell Cardiol 35:1207–1216

    CAS  PubMed  Google Scholar 

  71. Metrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc’h F (2008) Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102:959–965

    CAS  PubMed  Google Scholar 

  72. Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, Lefkowitz RJ (1994) Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A 91:10109–10113

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Montgomery DE, Chandra M, Huang Q, Jin J, Solaro RJ (2001) Transgenic incorporation of skeletal TnT into cardiac myofilaments blunts PKC-mediated depression of force. Am J Physiol Heart Circ Physiol 280:H1011–H1018

    CAS  PubMed  Google Scholar 

  74. Montgomery DE, Wolska BM, Pyle WG, Roman BB, Dowell JC, Buttrick PM, Koretsky AP, Del Nido P, Solaro RJ (2002) Alpha-adrenergic response and myofilament activity in mouse hearts lacking PKC phosphorylation sites on cardiac TnI. Am J Physiol Heart Circ Physiol 282:H2397–H2405

    CAS  PubMed  Google Scholar 

  75. Morris MJ, Cox HS, Lambert GW, Kaye DM, Jennings GL, Meredith IT, Esler MD (1997) Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension 29:137–143

    CAS  PubMed  Google Scholar 

  76. Nishimaru K, Kobayashi M, Matsuda T, Tanaka Y, Tanaka H, Shigenobu K (2001) Alpha-adrenoceptor stimulation-mediated negative inotropism and enhanced Na(+)/Ca(2+) exchange in mouse ventricle. Am J Physiol Heart Circ Physiol 280:H132–H141

    CAS  PubMed  Google Scholar 

  77. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458

    CAS  PubMed Central  PubMed  Google Scholar 

  78. O’Connell TD, Swigart PM, Rodrigo MC, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC (2006) Alpha(1)-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 116:1005–1015

    PubMed Central  PubMed  Google Scholar 

  79. O’Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson PC (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111:1783–1791

    PubMed Central  PubMed  Google Scholar 

  80. O’Connell TD, Jensen BC, Baker AJ, Simpson PC (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66:308–333

    PubMed  Google Scholar 

  81. O’Connor CM, Gattis WA, Uretsky BF, Adams KF Jr, McNulty SE, Grossman SH, McKenna WJ, Zannad F, Swedberg K, Gheorghiade M, Califf RM (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 138:78–86

    PubMed  Google Scholar 

  82. Otani H, Das DK (1988) Alpha 1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62:8–17

    CAS  PubMed  Google Scholar 

  83. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355

    CAS  PubMed  Google Scholar 

  84. Patel CB, Noor N, Rockman HA (2010) Functional selectivity in adrenergic and angiotensin signaling systems. Mol Pharmacol 78:983–992

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Patterson AJ, Zhu W, Chow A, Agrawal R, Kosek J, Xiao RP, Kobilka B (2004) Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart. Crit Care Med 32:1041–1048

    PubMed  Google Scholar 

  86. Pepper GS, Lee RW (1999) Sympathetic activation in heart failure and its treatment with beta-blockade. Arch Intern Med 159:225–234

    CAS  PubMed  Google Scholar 

  87. Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J, Bers DM (2013) Epac2 mediates cardiac beta1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 127:913–922

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following alpha 1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett 206:292–298

    CAS  PubMed  Google Scholar 

  89. Regitz-Zagrosek V, Hertrampf R, Steffen C, Hildebrandt A, Fleck E (1994) Myocardial cyclic AMP and norepinephrine content in human heart failure. Eur Heart J 15(Suppl D):7–13

    PubMed  Google Scholar 

  90. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    CAS  PubMed  Google Scholar 

  91. Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659

    CAS  PubMed  Google Scholar 

  92. Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A 93:7375–7380

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A 99:9474–9479

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Rorabaugh BR, Ross SA, Gaivin RJ, Papay RS, McCune DF, Simpson PC, Perez DM (2005) alpha1A- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res 65:436–445

    CAS  PubMed  Google Scholar 

  95. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM (2003) The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 60:598–607

    CAS  PubMed  Google Scholar 

  96. Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768:1006–1018

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Sheikh SP, Vilardarga JP, Baranski TJ, Lichtarge O, Iiri T, Meng EC, Nissenson RA, Bourne HR (1999) Similar structures and shared switch mechanisms of the beta2-adrenoceptor and the parathyroid hormone receptor. Zn(II) bridges between helices III and VI block activation. J Biol Chem 274:17033–17041

    CAS  PubMed  Google Scholar 

  98. Skomedal T, Borthne K, Aass H, Geiran O, Osnes JB (1997) Comparison between alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic components elicited by norepinephrine in failing human ventricular muscle. J Pharmacol Exp Ther 280:721–729

    CAS  PubMed  Google Scholar 

  99. Steinberg SF (2002) Alpha(1)-adrenergic receptor subtype function in cardiomyocytes: lessons from genetic models in mice. J Mol Cell Cardiol 34:1141–1145

    CAS  PubMed  Google Scholar 

  100. Stelzer JE, Patel JR, Walker JW, Moss RL (2007) Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation. Circ Res 101:503–511

    CAS  PubMed  Google Scholar 

  101. Sugden PH, Bogoyevitch MA (1995) Intracellular signalling through protein kinases in the heart. Cardiovasc Res 30:478–492

    CAS  PubMed  Google Scholar 

  102. Swedberg K, Bristow MR, Cohn JN, Dargie H, Straub M, Wiltse C, Wright TJ, Moxonidine S, Efficacy I (2002) Effects of sustained-release moxonidine, an imidazoline agonist, on plasma norepinephrine in patients with chronic heart failure. Circulation 105:1797–1803

    CAS  PubMed  Google Scholar 

  103. Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243

    CAS  PubMed  Google Scholar 

  104. Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS (1985) Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol 17:317–338

    CAS  PubMed  Google Scholar 

  105. Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS (1985) Experimental catecholamine-induced myocardial necrosis. II. Temporal development of isoproterenol-induced contraction band lesions correlated with ECG, hemodynamic and biochemical changes. J Mol Cell Cardiol 17:647–656

    CAS  PubMed  Google Scholar 

  106. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762

    CAS  PubMed  Google Scholar 

  107. Turnbull L, McCloskey DT, O’Connell TD, Simpson PC, Baker AJ (2003) Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR. Am J Physiol Heart Circ Physiol 284:H1104–H1109

    CAS  PubMed  Google Scholar 

  108. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    CAS  PubMed  Google Scholar 

  109. Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hebert TE, Allen BG (2011) Nuclear beta-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal 23:89–98

    CAS  PubMed  Google Scholar 

  110. Vatner SF, Franklin D, Higgins CB, Patrick T, Braunwald E (1972) Left ventricular response to severe exertion in untethered dogs. J Clin Invest 51:3052–3060

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422

    CAS  PubMed  Google Scholar 

  112. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891

    PubMed  Google Scholar 

  113. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I (1975) Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 37:1022–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Wang BH, Du XJ, Autelitano DJ, Milano CA, Woodcock EA (2000) Adverse effects of constitutively active alpha(1B)-adrenergic receptors after pressure overload in mouse hearts. Am J Physiol Heart Circ Physiol 279:H1079–H1086

    CAS  PubMed  Google Scholar 

  115. Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ (2006) Contrasting inotropic responses to {alpha}1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol 291:H2013–H2017

    CAS  PubMed  Google Scholar 

  116. Wang G, Yeh CC, Jensen BC, Mann MJ, Simpson PC, Baker AJ (2010) Heart failure switches the RV {alpha}1-adrenergic inotropic response from negative to positive. Am J Physiol Heart Circ Physiol 298:H913–H920

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100:10782–10787

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Whelan RS, Konstantinidis K, Xiao RP, Kitsis RN (2013) Cardiomyocyte life-death decisions in response to chronic beta-adrenergic signaling. Circ Res 112:408–410

    CAS  PubMed  Google Scholar 

  119. Woo SH, Lee CO (1999) Role of PKC in the effects of alpha1-adrenergic stimulation on Ca2+ transients, contraction and Ca2+ current in guinea-pig ventricular myocytes. Pflugers Arch 437:335–344

    CAS  PubMed  Google Scholar 

  120. Wright CD, Chen Q, Baye NL, Huang Y, Healy CL, Kasinathan S, O’Connell TD (2008) Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ Res 103:992–1000

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Wright CD, Wu SC, Dahl EF, Sazama AJ, O’Connell TD (2012) Nuclear localization drives alpha1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cell Signal 24:794–802

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Xiang Y, Kobilka BK (2003) Myocyte adrenoceptor signaling pathways. Science 300:1530–1532

    CAS  PubMed  Google Scholar 

  123. Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329

    CAS  PubMed  Google Scholar 

  124. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific alpha1- and beta-adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330–337

    CAS  PubMed  Google Scholar 

  125. Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188

    CAS  PubMed  Google Scholar 

  126. Yoo B, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, Rockman HA (2009) Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297:H1377–H1386

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350

    CAS  PubMed  Google Scholar 

  128. Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q, Makarewich C, Ai X, Li Y, Tang A, Wang J, Gao H, Wang F, Ge XJ, Kunapuli SP, Zhou L, Zeng C, Xiang KY, Chen X (2013) Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling. Circ Res 112:498–509

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP (2003) Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111:617–625

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98:1607–1612

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a VA Merit Award and a grant-in-aid from the American Heart Association, Western States Affiliate. Figure 4 generously provided by Timothy D. O’Connell, University of Minnesota. Helpful discussion of the manuscript with Drs. Paul C. Simpson and Joel S. Karliner is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, A.J. Adrenergic signaling in heart failure: a balance of toxic and protective effects. Pflugers Arch - Eur J Physiol 466, 1139–1150 (2014). https://doi.org/10.1007/s00424-014-1491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1491-5

Keywords

Navigation