Skip to main content

Advertisement

Log in

cAMP–PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3–Orai1 complex

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

SK3 channel mediates the migration of various cancer cells. When expressed in breast cancer cells, SK3 channel forms a complex with Orai1, a voltage-independent Ca2+ channel. This SK3–Orai1 complex associates within lipid rafts where it controls a constitutive Ca2+ entry leading to cancer cell migration and bone metastases development. Since cAMP was found to modulate breast cancer cell migration, we hypothesized that this could be explained by a modulation of SK3 channel activity. Herein, we study the regulation of SK3 channel by the cAMP–PKA pathway and the consequences for SK3-dependent Ca2+ entry and cancer cell migration. We established that the beta-adrenergic receptor agonist, isoprenaline, or the direct adenylyl cyclase activator forskolin alone or in combination with the PDE4 inhibitor, CI-1044, decreased SK3 channel activity without modifying the expression of SK3 protein at the plasma membrane. Forskolin and CI-1044 reduced the SK3-dependent constitutive Ca2+ entry and the SK3-dependent migration of MDA-MB-435s cells. PKA inhibition with KT 5720 reduced: (1) the effect of forskolin and CI-1044 by 50 % on Ca2+ entry and (2) SK3 activity by inhibiting the serine phosphorylation of SK3. These cAMP-elevating agents displaced Orai1 protein outside lipid rafts in contrast to SK3, which remained in the lipid rafts fractions. All together, these results show that activation of the cAMP–PKA pathway decreases SK3 channel and SK3–Orai1 complex activities, leading to a decrease in both Ca2+ entry and cancer cell migration. This work supports the potential use of cAMP-elevating agents to reduce cancer cell migration and may provide novel opportunities to address/prevent bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93

    Article  PubMed  CAS  Google Scholar 

  2. Barman SA, Zhu S, Han G, White RE (2003) cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 284:L1004–L1011

    PubMed  CAS  Google Scholar 

  3. Brouard T, Chantome A (2011) Automatic nuclei cell counting in low-resolution fluorescence images. Computational vision and medical image processing: recent trends.Springer, Netherlands, pp 311–326

  4. Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706

    Article  PubMed  CAS  Google Scholar 

  5. Burnouf C, Auclair E, Avenel N, Bertin B, Bigot C, Calvet A, Chan K, Durand C, Fasquelle V, Feru F, Gilbertsen R, Jacobelli H, Kebsi A, Lallier E, Maignel J, Martin B, Milano S, Ouagued M, Pascal Y, Pruniaux MP, Puaud J, Rocher MN, Terrasse C, Wrigglesworth R, Doherty AM (2000) Synthesis, structure-activity relationships, and pharmacological profile of 9-amino-4-oxo-1-phenyl-3,4,6,7-tetrahydro[1,4]diazepino[6, 7,1-hi]indoles: discovery of potent, selective phosphodiesterase type 4 inhibitors. J Med Chem 43:4850–4867

    Article  PubMed  CAS  Google Scholar 

  6. Calaghan S, Kozera L, White E (2008) Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol 45:88–92

    Article  PubMed  CAS  Google Scholar 

  7. Chantome A, Potier-Cartereau M, Clarysse L, Fromont G, Marionneau-Lambot S, Gueguinou M, Pages JC, Collin C, Oullier T, Girault A, Arbion F, Haelters JP, Jaffres PA, Pinault M, Besson P, Joulin V, Bougnoux P, Vandier C (2013) Pivotal role of the lipid raft SK3–Orai1 complex in human cancer cell migration and bone metastases. Cancer Res 73:4852–4861

    Article  PubMed  CAS  Google Scholar 

  8. Choi S, Kim MY, Joo KY, Park S, Kim JA, Jung JC, Oh S, Suh SH (2012) Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism. Pharmacol Res 66:51–59

    Article  PubMed  CAS  Google Scholar 

  9. Chung SK, Reinhart PH, Martin BL, Brautigan D, Levitan IB (1991) Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science 253:560–562

    Article  PubMed  CAS  Google Scholar 

  10. Cuddapah VA, Sontheimer H (2011) Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301:C541–C549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Esguerra M, Wang J, Foster CD, Adelman JP, North RA, Levitan IB (1994) Cloned Ca(2+)-dependent K+ channel modulated by a functionally associated protein kinase. Nature 369:563–565

    Article  PubMed  CAS  Google Scholar 

  12. Faber ES, Delaney AJ, Power JM, Sedlak PL, Crane JW, Sah P (2008) Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. J Neurosci 28:10803–10813

    Article  PubMed  CAS  Google Scholar 

  13. Gerlach AC, Gangopadhyay NN, Devor DC (2000) Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1. J Biol Chem 275:585–598

    Article  PubMed  CAS  Google Scholar 

  14. Girault A, Haelters JP, Potier-Cartereau M, Chantome A, Jaffres PA, Bougnoux P, Joulin V, Vandier C (2012) Targeting SKCa channels in cancer: potential new therapeutic approaches. Curr Med Chem 19:697–713

    Article  PubMed  CAS  Google Scholar 

  15. Girault A, Haelters JP, Potier M, Chantome A, Pinault M, Marionneau-Lambot S, Oullier T, Simon G, Couthon-Gourves H, Jaffres PA, Corbel B, Bougnoux P, Joulin V, Vandier C (2011) New alkyl-lipid blockers of SK3 channels reduce cancer-cell migration and occurrence of metastasis. Curr Cancer Drug Targets 11:1111–1125

    Article  PubMed  CAS  Google Scholar 

  16. Hayashi M, Kunii C, Takahata T, Ishikawa T (2004) ATP-dependent regulation of SK4/IK1-like currents in rat submandibular acinar cells: possible role of cAMP-dependent protein kinase. Am J Physiol Cell Physiol 286:C635–C646

    Article  PubMed  CAS  Google Scholar 

  17. Hofmann F, Biel M, Kaupp UB (2005) International Union of Pharmacology. LI. Nomenclature and structure–function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 57:455–462

    Article  PubMed  CAS  Google Scholar 

  18. Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta 1692:159–174

    Article  PubMed  CAS  Google Scholar 

  19. Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem 272:23195–23200

    Article  PubMed  CAS  Google Scholar 

  20. Lim CJ, Kain KH, Tkachenko E, Goldfinger LE, Gutierrez E, Allen MD, Groisman A, Zhang J, Ginsberg MH (2008) Integrin-mediated protein kinase A activation at the leading edge of migrating cells. Mol Biol Cell 19:4930–4941

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lin MT, Lujan R, Watanabe M, Adelman JP, Maylie J (2008) SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nat Neurosci 11:170–177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Lu L, Zhang Q, Timofeyev V, Zhang Z, Young JN, Shin HS, Knowlton AA, Chiamvimonvat N (2007) Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ Res 100:112–120

    Article  PubMed  CAS  Google Scholar 

  23. Maciaszek JL, Soh H, Walikonis RS, Tzingounis AV, Lykotrafitis G (2012) Topography of native SK channels revealed by force nanoscopy in living neurons. J Neurosci 32:11435–11440

    Article  PubMed  CAS  Google Scholar 

  24. Matthiesen K, Nielsen J (2011) Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization. PLoS One 6:e24392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Monaghan AS, Benton DC, Bahia PK, Hosseini R, Shah YA, Haylett DG, Moss GW (2004) The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J Biol Chem 279:1003–1009

    Article  PubMed  CAS  Google Scholar 

  26. Neylon CB, D’Souza T, Reinhart PH (2004) Protein kinase A inhibits intermediate conductance Ca2+-activated K+ channels expressed in Xenopus oocytes. Pflugers Arch 448:613–620

    Article  PubMed  CAS  Google Scholar 

  27. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  PubMed  CAS  Google Scholar 

  28. O’Connor KL, Mercurio AM (2001) Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J Biol Chem 276:47895–47900

    PubMed  Google Scholar 

  29. O’Connor KL, Nguyen BK, Mercurio AM (2000) RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism. J Cell Biol 148:253–258

    Article  PubMed  PubMed Central  Google Scholar 

  30. O’Connor KL, Shaw LM, Mercurio AM (1998) Release of cAMP gating by the alpha6beta4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J Cell Biol 143:1749–1760

    Article  PubMed  PubMed Central  Google Scholar 

  31. Organ-Darling LE, Vernon AN, Giovanniello JR, Lu Y, Moshal K, Roder K, Li W, Koren G (2013) Interactions between hERG and KCNQ1 alpha-subunits are mediated by their COOH termini and modulated by cAMP. Am J Physiol Heart Circ Physiol 304:H589–H599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Paulucci-Holthauzen AA, Vergara LA, Bellot LJ, Canton D, Scott JD, O’Connor KL (2009) Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem 284:5956–5967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Pellegrino M, Pellegrini M (1998) Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous cAMP-dependent protein kinase. Pflugers Arch 436:749–756

    Article  PubMed  CAS  Google Scholar 

  34. Perry MD, Sandle GI (2009) Regulation of colonic apical potassium (BK) channels by cAMP and somatostatin. Am J Physiol Gastrointest Liver Physiol 297:G159–G167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Potier M, Chantome A, Joulin V, Girault A, Roger S, Besson P, Jourdan ML, LeGuennec JY, Bougnoux P, Vandier C (2011) The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine. Br J Pharmacol 162:464–479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, Leguennec JY, Bougnoux P, Vandier C (2006) Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 5:2946–2953

    Article  PubMed  CAS  Google Scholar 

  37. Ren Y, Barnwell LF, Alexander JC, Lubin FD, Adelman JP, Pfaffinger PJ, Schrader LA, Anderson AE (2006) Regulation of surface localization of the small conductance Ca2+-activated potassium channel, Sk2, through direct phosphorylation by cAMP-dependent protein kinase. J Biol Chem 281:11769–11779

    Article  PubMed  CAS  Google Scholar 

  38. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  PubMed  CAS  Google Scholar 

  39. Schwab A, Finsterwalder F, Kersting U, Danker T, Oberleithner H (1997) Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch 434:70–76

    Article  PubMed  CAS  Google Scholar 

  40. Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H (1995) Polarized ion transport during migration of transformed Madin-Darby canine kidney cells. Pflugers Arch 430:802–807

    Article  PubMed  CAS  Google Scholar 

  41. Spina A, Di Maiolo F, Esposito A, Sapio L, Chiosi E, Sorvillo L, Naviglio S (2012) cAMP elevation down-regulates beta3 integrin and focal adhesion kinase and inhibits leptin-induced migration of MDA-MB-231 breast cancer cells. BioResearch open access 1:324–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Syme CA, Hamilton KL, Jones HM, Gerlach AC, Giltinan L, Papworth GD, Watkins SC, Bradbury NA, Devor DC (2003) Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal leucine zipper. J Biol Chem 278:8476–8486

    Article  PubMed  CAS  Google Scholar 

  43. Trautwein W, Hescheler J (1990) Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52:257–274

    Article  PubMed  CAS  Google Scholar 

  44. Xin W, Tran TM, Richter W, Clark RB, Rich TC (2008) Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling. J Gen Physiol 131:349–364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by “University of Tours”, “Région Centre”, “INSERM”, “Ligue Contre le Cancer”, “Cancéropôle Grand Ouest” , Tours’ Hospital oncology association ACORT, CANCEN and ANR grant 2010 BLAN 1139-01 (to GV). Lucie Clarysse held fellowships from the “Région Centre” and “INSERM” and Maxime Gueguinou from “Région Centre”. We thanks Pr Gunther Weber and Audrey Gambade for assistance in performing lipid rafts experiments. We thank Aurore Douaud-Lecaille and Isabelle Domingo for technical assistance and Catherine Leroy for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Vandier.

Additional information

Lucie Clarysse, Maxime Guéguinou, Aurélie Chantôme, and Christophe Vandier contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarysse, L., Guéguinou, M., Potier-Cartereau, M. et al. cAMP–PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3–Orai1 complex. Pflugers Arch - Eur J Physiol 466, 1921–1932 (2014). https://doi.org/10.1007/s00424-013-1435-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1435-5

Keywords

Navigation