Skip to main content
Log in

Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step

  • Ion channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The SLC34 family of Na+-dependent inorganic phosphate cotransporters comprises two electrogenic isoforms (NaPi-IIa, NaPi-IIb) and an electroneutral isoform (NaPi-IIc). Both fulfill essential physiological roles in mammalian phosphate homeostasis. By substitution of three conserved amino acids, found in all electrogenic isoforms, at corresponding sites in NaPi-IIc, electrogenicity was re-established and the Na+/P i stoichiometry increased from 2:1 to 3:1. However, this engineered electrogenic construct (AAD-IIc) had a reduced apparent P i affinity and different presteady-state kinetics from the wild-type NaPi-IIa/b. We investigated AAD-IIc using electrophysiology and voltage clamp fluorometry to elucidate the compromised behavior. The activation energy for cotransport was threefold higher than for NaPi-IIc and 1.5-fold higher than for NaPi-IIa and the temperature dependence of presteady-state charge displacements suggested that the large activation energy was associated with the empty carrier reorientation. AAD-IIc shows a weak interaction of external Na+ ions with the electric field, and thus retains the electroneutral cooperative interaction of two Na+ ions preceding external P i binding of NaPi-IIc. Most of the presteady-state charge movement was accounted for by the empty carrier (in the absence of external P i ), and the cytosolic release of one Na+ ion (in the presence of P i ). Simulations using a kinetic model recapitulated the presteady-state and steady-state behavior and allowed identification of two critical partial reactions: the final release of Na+ to the cytosol and external P i binding. Fluorometric recordings from AAD-IIc mutants with Cys substituted at functionally important sites established that AAD-IIc undergoes substrate- and voltage-dependent conformational changes that correlated qualitatively with its presteady-state kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Standard procedures to minimize the contamination by endogenous Ca2+-dependent Cl currents, such as preincubation of oocytes in BAPTA-AM, or replacement of external Ca2+ with Ba2+ did not fully suppress these currents.

  2. We also previously reported evidence of a leak mode for AAD-IIc based on the electrogenic response to application of the blocker phosphonoformic acid (PFA) [4]. A detailed characterisation of this mode was not undertaken in the present study due to the low apparent affinity of AAD-IIc for Pi and PFA that would result incomplete suppression of the leak current with the substrate concentrations used.

References

  1. Andrini O, Ghezzi C, Murer H, Forster IC (2008) The leak mode of type II Na(+)-P(i) cotransporters. Channels (Austin) 2:346–357

    Article  Google Scholar 

  2. Andrini O, Meinild AK, Ghezzi C, Murer H, Forster IC (2012) Lithium interactions with Na+-coupled inorganic phosphate cotransporters: insights into the mechanism of sequential cation binding. Am J Physiol Cell Physiol 302:C539–554

    Article  PubMed  CAS  Google Scholar 

  3. Bacconi A, Ravera S, Virkki LV, Murer H, Forster IC (2007) Temperature-dependency of steady-state and presteady-state kinetics of a type IIb Na+/Pi cotransporter. J Mem Bio 215(2–3):81–92

    Article  CAS  Google Scholar 

  4. Bacconi A, Virkki LV, Biber J, Murer H, Forster IC (2005) Renouncing electrogenicity is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci U S A 102:12606–12611

    Article  PubMed  CAS  Google Scholar 

  5. Binda F, Bossi E, Giovannardi S, Forlani G, Peres A (2002) Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 512:303–307

    Article  PubMed  CAS  Google Scholar 

  6. Bossi E, Cherubino F, Margheritis E, Oyadeyi AS, Vollero A, Peres A (2012) Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch 464:183–191

    Article  PubMed  CAS  Google Scholar 

  7. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M (2009) Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297:F350–361

    Article  PubMed  CAS  Google Scholar 

  8. Cha A, Bezanilla F (1998) Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol 112:391–408

    Article  PubMed  CAS  Google Scholar 

  9. de la Horra C, Hernando N, Lambert G, Forster I, Biber J, Murer H (2000) Molecular determinants of pH sensitivity of the type IIa Na/P(i) cotransporter. J Biol Chem 275:6284–6287

    Article  PubMed  Google Scholar 

  10. Ehnes C, Forster IC, Bacconi A, Kohler K, Biber J, Murer H (2004) Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II Substrate interaction and voltage dependency of two functionally important sites. J Gen Physiol 124:489–503

    Article  PubMed  CAS  Google Scholar 

  11. Ehnes C, Forster IC, Kohler K, Bacconi A, Stange G, Biber J, Murer H (2004) Structure-function relations of the first and fourth predicted extracellular linkers of the type IIa Na+/Pi cotransporter: I Cysteine scanning mutagenesis. J Gen Physiol 124:475–488

    Article  PubMed  CAS  Google Scholar 

  12. Forrest LR, Kramer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188

    Article  PubMed  CAS  Google Scholar 

  13. Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18

    Article  PubMed  CAS  Google Scholar 

  14. Forster IC, Biber J, Murer H (2000) Proton-sensitive transitions of renal type II Na+-coupled phosphate cotransporter kinetics. Biophys J 79:215–230

    Article  PubMed  CAS  Google Scholar 

  15. Forster IC, Hernando N, Biber J, Murer H (2012) Phosphate transport kinetics and structure–function relationships of SLC34 and SLC20 proteins. Curr Top Membr 70:313–356

    Article  PubMed  CAS  Google Scholar 

  16. Forster IC, Kohler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    Article  PubMed  CAS  Google Scholar 

  17. Forster IC, Loo DD, Eskandari S (1999) Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol 276:F644–649

    PubMed  CAS  Google Scholar 

  18. Forster IC, Wagner CA, Busch AE, Lang F, Biber J, Hernando N, Murer H, Werner A (1997) Electrophysiological characterization of the flounder type II Na+/Pi cotransporter (NaPi-5) expressed in Xenopus laevis oocytes. J Membr Biol 160:9–25

    Article  PubMed  CAS  Google Scholar 

  19. Ghezzi C, Meinild AK, Murer H, Forster IC (2011) Voltage- and substrate-dependent interactions between sites in putative re-entrant domains of a Na(+)-coupled phosphate cotransporter. Pflugers Arch 461:645–663

    Article  PubMed  CAS  Google Scholar 

  20. Ghezzi C, Murer H, Forster IC (2009) Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc). J Physiol 587:4293–4307

    Article  PubMed  CAS  Google Scholar 

  21. Hazama A, Loo DD, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186

    Article  PubMed  CAS  Google Scholar 

  22. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  PubMed  CAS  Google Scholar 

  23. Lambert G, Forster IC, Biber J, Murer H (2000) Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa). J Membr Biol 176:133–141

    Article  PubMed  CAS  Google Scholar 

  24. Lambert G, Forster IC, Stange G, Biber J, Murer H (1999) Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na+/Pi cotransporter protein. J Gen Physiol 114:637–652

    Article  PubMed  CAS  Google Scholar 

  25. Lambert G, Forster IC, Stange G, Kohler K, Biber J, Murer H (2001) Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter. J Gen Physiol 117:533–546

    Article  PubMed  CAS  Google Scholar 

  26. Lester HA, Mager S, Quick MW, Corey JL (1994) Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol 34:219–249

    Article  PubMed  CAS  Google Scholar 

  27. Mackenzie B, Loo DD, Wright EM (1998) Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 162:101–106

    Article  PubMed  CAS  Google Scholar 

  28. Matthews E Jr, Rahnama-Vaghef A, Eskandari S (2009) Inhibitors of the gamma-aminobutyric acid transporter 1 (GAT1) do not reveal a channel mode of conduction. Neurochem Int 55:732–740

    Article  PubMed  CAS  Google Scholar 

  29. Meinild AK, Forster IC (2012) Using lithium to probe sequential cation interactions with GAT1. Am J Physiol Cell Physiol 302:C1661–1675

    Article  PubMed  CAS  Google Scholar 

  30. Radanovic T, Gisler SM, Biber J, Murer H (2006) Topology of the type IIa Na+/P(i) cotransporter. J Membr Biol 212:41–49

    Article  PubMed  CAS  Google Scholar 

  31. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  PubMed  CAS  Google Scholar 

  32. Virkki LV, Forster IC, Bacconi A, Biber J, Murer H (2005) Functionally important residues in the predicted 3rd transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa). J Membr Biol 206:227–238

    Article  PubMed  CAS  Google Scholar 

  33. Virkki LV, Forster IC, Biber J, Murer H (2005) Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Am J Physiol 288:F969–F981

    CAS  Google Scholar 

  34. Virkki LV, Murer H, Forster IC (2006) Mapping conformational changes of the type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J Biol Chem 281:28837–28849

    Article  PubMed  CAS  Google Scholar 

  35. Virkki LV, Murer H, Forster IC (2006) Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. J Gen Physiol 127:539–555

    Article  PubMed  CAS  Google Scholar 

  36. Werner A, Kinne RK (2001) Evolution of the Na-Pi cotransport systems. Am J Physiol 280:R301–312

    CAS  Google Scholar 

  37. Winzor DJ, Jackson CM (2006) Interpretation of the temperature dependence of equilibrium and rate constants. J Mol Recognit 19:389–407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Eva Hänsenberger for oocyte preparation. Special thanks to Dr Anne-Kristine Meinild (UZH) and Dr Donald D.F. Loo (UCLA) for their insightful comments. This work was supported by the Swiss National Science Foundation grant to ICF and Hartmann Müller-Stiftung grant to CG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Forster.

Additional information

Monica Patti and Chiara Ghezzi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patti, M., Ghezzi, C. & Forster, I.C. Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step. Pflugers Arch - Eur J Physiol 465, 1261–1279 (2013). https://doi.org/10.1007/s00424-013-1261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1261-9

Keywords

Navigation