Skip to main content

Advertisement

Log in

Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Low-voltage-activated T-type calcium channels play important roles in neuronal physiology where they control cellular excitability and synaptic transmission. Alteration in T-type channel expression has been linked to various pathophysiological conditions such as pain arising from diabetic neuropathy. In the present study, we looked at the role of asparagine (N)-linked glycosylation on human Cav3.2 T-type channel expression and function. Manipulation of N-glycans on cells expressing a recombinant Cav3.2 channel revealed that N-linked glycosylation is critical for proper functional expression of the channel. Using site-directed mutagenesis to disrupt the canonical N-linked glycosylation sites of Cav3.2 channel, we show that glycosylation at asparagine N192 is critical for channel expression at the surface, whereas glycosylation at asparagine N1466 controls channel activity. Moreover, we demonstrate that N-linked glycosylation of Cav3.2 not only controls surface expression and activity of the channel but also underlies glucose-dependent potentiation of T-type Ca2+ current. Our data suggest that N-linked glycosylation of T-type channels may play an important role in aberrant upregulation of T-type channel activity in response to glucose elevations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bal T, McCormick DA (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 77(6):3145–3156

    PubMed  CAS  Google Scholar 

  2. Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The J Neurosci: Off J Soc Neurosci 19(2):599–609

    CAS  Google Scholar 

  3. Bossu JL, Fagni L, Feltz A (1989) Voltage-activated calcium channels in rat Purkinje cells maintained in culture. Pflugers Archiv: Eur J Physiol 414(1):92–94

    Article  CAS  Google Scholar 

  4. Bossu JL, Feltz A, Rodeau JL, Tanzi F (1989) Voltage-dependent transient calcium currents in freshly dissociated capillary endothelial cells. FEBS Lett 255(2):377–380

    Article  PubMed  CAS  Google Scholar 

  5. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Ca(v)3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24(2):315–324

    Article  PubMed  CAS  Google Scholar 

  6. Carbone E, Giancippoli A, Marcantoni A, Guido D, Carabelli V (2006) A new role for T-type channels in fast “low-threshold” exocytosis. Cell calcium 40(2):147–154

    Article  PubMed  CAS  Google Scholar 

  7. Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46(3):413–418

    Article  PubMed  CAS  Google Scholar 

  8. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310(5977):501–502

    Article  PubMed  CAS  Google Scholar 

  9. Cohen DM (2006) Regulation of TRP channels by N-linked glycosylation. Semin Cell Dev Biol 17(6):630–637

    Article  PubMed  CAS  Google Scholar 

  10. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96(1):25–28

    Article  PubMed  CAS  Google Scholar 

  11. Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83(1):103–109

    Article  PubMed  CAS  Google Scholar 

  12. Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell calcium 40(2):175–190

    Article  PubMed  CAS  Google Scholar 

  13. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17(6):666–672

    Article  PubMed  CAS  Google Scholar 

  14. Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278(48):47842–47852

    Article  PubMed  CAS  Google Scholar 

  15. Fahrenkrug J, Falktoft B, Georg B, Rask L (2009) N-linked deglycosylated melanopsin retains its responsiveness to light. Biochemistry 48(23):5142–5148

    Article  PubMed  CAS  Google Scholar 

  16. Fermini B, Nathan RD (1991) Removal of sialic acid alters both T- and L-type calcium currents in cardiac myocytes. Am J Physiol 260(3 Pt 2):H735–H743

    PubMed  CAS  Google Scholar 

  17. Hooper R, Churamani D, Brailoiu E, Taylor CW, Patel S (2011) Membrane topology of NAADP-sensitive two-pore channels and their regulation by N-linked glycosylation. J Biol Chem 286(11):9141–9149

    Article  PubMed  CAS  Google Scholar 

  18. Isaev D, Isaeva E, Shatskih T, Zhao Q, Smits NC, Shworak NW, Khazipov R, Holmes GL (2007) Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. J Neurosci 27(43):11587–11594

    Article  PubMed  CAS  Google Scholar 

  19. Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99(6):3151–3156

    Article  PubMed  CAS  Google Scholar 

  20. Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86(3):941–966

    Article  PubMed  CAS  Google Scholar 

  21. Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302(5642):117–119

    Article  PubMed  CAS  Google Scholar 

  22. Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5(1):13–23

    Article  PubMed  CAS  Google Scholar 

  23. Kucherenko YV, Bhavsar SK, Grischenko VI, Fischer UR, Huber SM, Lang F (2010) Increased cation conductance in human erythrocytes artificially aged by glycation. J Membr Biol 235(3):177–189

    Article  PubMed  CAS  Google Scholar 

  24. Larkin A, Imperiali B (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426

    Article  PubMed  CAS  Google Scholar 

  25. Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 58(11):2656–2665

    Article  PubMed  CAS  Google Scholar 

  26. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. The J Neurosci: Off J Soc Neurosci 19(6):1912–1921

    CAS  Google Scholar 

  27. Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell calcium 40(2):135–146

    Article  PubMed  CAS  Google Scholar 

  28. Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74(3):1335–1342

    PubMed  CAS  Google Scholar 

  29. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268(5208):301–304

    Article  PubMed  CAS  Google Scholar 

  30. Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci U S A 91(11):5207–5211

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Maza R, Poyatos I, Lopez-Corcuera B, Nu E, Gimenez C, Zafra F, Aragon C (2001) The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem 276(3):2168–2173

    Article  PubMed  CAS  Google Scholar 

  32. Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145(1–2):184–195

    Article  PubMed  CAS  Google Scholar 

  33. Montpetit ML, Stocker PJ, Schwetz TA, Harper JM, Norring SA, Schaffer L, North SJ, Jang-Lee J, Gilmartin T, Head SR, Haslam SM, Dell A, Marth JD, Bennett ES (2009) Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc Natl Acad Sci U S A 106(38):16517–16522

    Article  PubMed  CAS  Google Scholar 

  34. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462

    Article  PubMed  CAS  Google Scholar 

  35. Mouginot D, Bossu JL, Gahwiler BH (1997) Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures. The J Neurosci: Off J Soc Neurosci 17(1):160–170

    CAS  Google Scholar 

  36. Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium 40(2):81–88

    Article  PubMed  CAS  Google Scholar 

  37. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316(6027):440–443

    Article  PubMed  CAS  Google Scholar 

  38. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    PubMed  CAS  Google Scholar 

  39. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391(6670):896–900

    Article  PubMed  CAS  Google Scholar 

  40. Pertusa M, Madrid R, Morenilla-Palao C, Belmonte C, Viana F (2012) N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J Biol Chem 287(22):18218–18229

    Article  PubMed  CAS  Google Scholar 

  41. Rossier MF, Ertel EA, Vallotton MB, Capponi AM (1998) Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells. J Pharmacol Exp Ther 287(3):824–831

    PubMed  CAS  Google Scholar 

  42. Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30(6):497–506

    Article  PubMed  CAS  Google Scholar 

  43. Shin HS (2006) T-type Ca2+ channels and absence epilepsy. Cell calcium 40(2):191–196

    Article  PubMed  CAS  Google Scholar 

  44. Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S (2003) Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 551(Pt 3):927–943

    Article  PubMed  CAS  Google Scholar 

  45. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  PubMed  CAS  Google Scholar 

  46. Straumann N, Wind A, Leuenberger T, Wallimann T (2006) Effects of N-linked glycosylation on the creatine transporter. Biochem J 393(Pt 2):459–469

    PubMed  CAS  Google Scholar 

  47. Tanaka K, Xu W, Zhou F, You G (2004) Role of glycosylation in the organic anion transporter OAT1. J Biol Chem 279(15):14961–14966

    Article  PubMed  CAS  Google Scholar 

  48. Tang CM, Presser F, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Science 240(4849):213–215

    Article  PubMed  CAS  Google Scholar 

  49. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V (2002) Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 951(2):336–340

    Article  PubMed  CAS  Google Scholar 

  50. Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quinones LE, Santana LF (2001) Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem 276(30):28197–28203

    Article  PubMed  CAS  Google Scholar 

  51. Watanabe I, Wang HG, Sutachan JJ, Zhu J, Recio-Pinto E, Thornhill WB (2003) Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol 550(Pt 1):51–66

    Article  PubMed  CAS  Google Scholar 

  52. Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB (2004) Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. J Biol Chem 279(10):8879–8885

    Article  PubMed  CAS  Google Scholar 

  53. Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287(4):2810–2818

    Article  PubMed  CAS  Google Scholar 

  54. Weiss N, Sandoval A, Felix R, Van den Maagdenberg A, De Waard M (2008) The S218L familial hemiplegic migraine mutation promotes deinhibition of Ca(v)2.1 calcium channels during direct G-protein regulation. Pflugers Arch 457(2):315–326

    Article  PubMed  CAS  Google Scholar 

  55. Weiss N, Zamponi GW (2012) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta. doi:10.1016/j.bbamem.2012.07.031

  56. Weiss N, Zamponi GW, De Waard M (2012) How do T-type calcium channels control low-threshold exocytosis? Commun Integr Biol 5(4):377–380

    Article  PubMed  CAS  Google Scholar 

  57. Wheatley M, Hawtin SR (1999) Glycosylation of G-protein-coupled receptors for hormones central to normal reproductive functioning: its occurrence and role. Hum Reprod Updat 5(4):356–364

    Article  CAS  Google Scholar 

  58. Xu H, Fu Y, Tian W, Cohen DM (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Ren Physiol 290(5):F1103–F1109

    Article  CAS  Google Scholar 

  59. Yee HF Jr, Weiss JN, Langer GA (1989) Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes. Am J Physiol 256(6 Pt 1):C1267–C1272

    PubMed  CAS  Google Scholar 

  60. Zamponi GW, Lory P, Perez-Reyes E (2010) Role of voltage-gated calcium channels in epilepsy. Pflugers Archiv: Eur J Physiol 460(2):395–403

    Article  CAS  Google Scholar 

  61. Zhou F, Xu W, Hong M, Pan Z, Sinko PJ, Ma J, You G (2005) The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Mol Pharmacol 67(3):868–876

    Article  PubMed  CAS  Google Scholar 

  62. Zhuravleva SO, Kostyuk PG, Shuba YM (2001) Subtypes of low voltage-activated Ca2+ channels in laterodorsal thalamic neurons: possible localization and physiological roles. Pflugers Arch 441(6):832–839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NW was supported by fellowships from Alberta Innovates—Health Solutions (AIHS) and from the Hotchkiss Brain Institute (HBI). SAGB was supported by the Heart and Stroke Foundation of Canada Research Fellowship. CB was supported by an AIHS and HBI studentship. GWZ is funded by the Canadian Institutes of Health Research and is a Canada Research Chair and AIHS Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Zamponi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, N., Black, S.A.G., Bladen, C. et al. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch - Eur J Physiol 465, 1159–1170 (2013). https://doi.org/10.1007/s00424-013-1259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1259-3

Keywords

Navigation