Skip to main content

Advertisement

Log in

Change in Nox4 expression is accompanied by changes in myogenic marker expression in differentiating C2C12 myoblasts

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Myoblast differentiation is mediated by a cascade of changes in gene expression including transcription factors such as myogenin. Subsequent to myoblast differentiation, there is an increase in expression of the transmembrane protein NADPH oxidase (Nox). Nox is one of the primary factors for the generation of reactive oxygen species (ROS) in myogenic (C2C12) cells. Recently, ROS have been shown to be important regulators of several intracellular signaling pathways, and the full extent of their regulatory roles is yet to be discovered. In the present study, qRT PCR analysis demonstrated that Nox4 isoform is primarily expressed in differentiating C2C12 cells and contributes to the generation of ROS in C2C12 myoblast during differentiation. Over-expression and silencing of Nox4 expression during myoblast differentiation was accompanied by a reduction in intracellular ROS concentrations and an alteration in the expression patterns of Myf5, Pax7, MyoD1, and myogenin. This modulation was found to be associated with ERK1/2 phosphorylation. In both over-expression and reduced expression of Nox4, we found significant reductions in ERK1/2 phosphorylation. This indicates that cellular differentiation may be affected by Nox4-mediated endogenous ROS generation. These data suggest a new opportunity to study the temporal expression of Nox4 in the generation of ROS accompanying changes in myogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A 105(4):1226–1231. doi:10.1073/pnas.0711402105

    Article  PubMed  CAS  Google Scholar 

  2. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666

    Article  PubMed  CAS  Google Scholar 

  3. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  PubMed  CAS  Google Scholar 

  4. Berkes CA, Bergstrom DA, Penn BH, Seaver KJ, Knoepfler PS, Tapscott SJ (2004) Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14(4):465–477

    Article  PubMed  CAS  Google Scholar 

  5. Brennan TJ, Olson EN (1990) Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev 4(4):582–595

    Article  PubMed  CAS  Google Scholar 

  6. Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389(3):203–209. doi:10.1515/BC.2008.029

    Article  PubMed  CAS  Google Scholar 

  7. Cabello-Verrugio C, Acuna MJ, Morales MG, Becerra A, Simon F, Brandan E (2011) Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochem Biophys Res Commun 410(3):665–670. doi:10.1016/j.bbrc.2011.06.051

    Article  PubMed  CAS  Google Scholar 

  8. Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N, Fernandez A (1998) RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9(7):1891–1902

    Article  PubMed  CAS  Google Scholar 

  9. Cheguru P, Chapalamadugu KC, Doumit ME, Murdoch GK, Hill RA (2012) Adipocyte differentiation-specific gene transcriptional response to C18 unsaturated fatty acids plus insulin. Pflugers Arch 463(3):429–447. doi:10.1007/s00424-011-1066-7

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040–1052. doi:10.1038/cdd.2009.49

    Article  PubMed  CAS  Google Scholar 

  11. Choi H, Kim S, Kim HJ, Kim KM, Lee CH, Shin JH, Noh M (2010) Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes. Biochem Pharmacol 80(1):95–103. doi:10.1016/j.bcp.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  12. Clemente CF, Corat MA, Saad ST, Franchini KG (2005) Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am J Physiol Regul Integr Comp Physiol 289(3):R862–R870. doi:10.1152/ajpregu.00348.2004

    Article  PubMed  CAS  Google Scholar 

  13. Collins CA, Gnocchi VF, White RB, Boldrin L, Perez-Ruiz A, Relaix F, Morgan JE, Zammit PS (2009) Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One 4(2):e4475. doi:10.1371/journal.pone.0004475

    Article  PubMed  Google Scholar 

  14. Dedieu S, Mazeres G, Cottin P, Brustis JJ (2002) Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol 46(2):235–241

    PubMed  CAS  Google Scholar 

  15. Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4(12):1367–1373

    Article  PubMed  CAS  Google Scholar 

  16. Diel P, Baadners D, Schlupmann K, Velders M, Schwarz JP (2008) C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. J Mol Endocrinol 40(5):231–241. doi:10.1677/JME-07-0175

    Article  PubMed  CAS  Google Scholar 

  17. Ding Y, Choi KJ, Kim JH, Han X, Piao Y, Jeong JH, Choe W, Kang I, Ha J, Forman HJ, Lee J, Yoon KS, Kim SS (2008) Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation. Am J Pathol 172(6):1529–1541. doi:10.2353/ajpath.2008.070429

    Article  PubMed  CAS  Google Scholar 

  18. Geiszt M (2006) NADPH oxidases: new kids on the block. Cardiovasc Res 71(2):289–299. doi:10.1016/j.cardiores.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  19. Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H (2009) Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun 380(2):355–360

    Article  PubMed  CAS  Google Scholar 

  20. Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L, Rose F, Fink L, Ghofrani HA, Schermuly RT, Schmidt HH, Seeger W, Hanze J (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 36(10):1279–1288. doi:10.1016/j.freeradbiomed.2004.02.071S0891584904001893

    Article  PubMed  CAS  Google Scholar 

  21. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(Pt 2):345–350

    Article  PubMed  CAS  Google Scholar 

  22. Handayaningsih AE, Iguchi G, Fukuoka H, Nishizawa H, Takahashi M, Yamamoto M, Herningtyas EH, Okimura Y, Kaji H, Chihara K, Seino S, Takahashi Y (2011) Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology 152(3):912–921. doi:10.1210/en.2010-0981

    Article  PubMed  CAS  Google Scholar 

  23. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. doi:10.1038/nm.2005

    Article  PubMed  CAS  Google Scholar 

  24. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24(4):677–683. doi:10.1161/01.ATV.0000112024.13727.2c

    Article  PubMed  CAS  Google Scholar 

  25. Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50(1):47–54. doi:10.1387/ijdb.052111dh

    Article  PubMed  CAS  Google Scholar 

  26. Hutchinson DS, Csikasz RI, Yamamoto DL, Shabalina IG, Wikstrom P, Wilcke M, Bengtsson T (2007) Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase. Cell Signal 19(7):1610–1620. doi:10.1016/j.cellsig.2007.02.006

    Article  PubMed  CAS  Google Scholar 

  27. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186(1):104–115. doi:10.1002/1097-4652(200101)186:1 < 104::AID-JCP1015 > 3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  28. Kim KS, Choi HW, Yoon HE, Kim IY (2010) Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J Biol Chem 285(51):40294–40302. doi:10.1074/jbc.M110.126821

    Article  PubMed  CAS  Google Scholar 

  29. Kim BW, Lee JW, Choo HJ, Lee CS, Jung SY, Yi JS, Ham YM, Lee JH, Hong J, Kang MJ, Chi SG, Hyung SW, Lee SW, Kim HM, Cho BR, Min DS, Yoon G, Ko YG (2010) Mitochondrial oxidative phosphorylation system is recruited to detergent-resistant lipid rafts during myogenesis. Proteomics 10(13):2498–2515. doi:10.1002/pmic.200900826

    Article  PubMed  CAS  Google Scholar 

  30. Kook SH, Lee HJ, Chung WT, Hwang IH, Lee SA, Kim BS, Lee JC (2008) Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25(4):479–486

    PubMed  CAS  Google Scholar 

  31. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107(35):15565–15570. doi:10.1073/pnas.1002178107

    Article  PubMed  CAS  Google Scholar 

  32. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K, Sumimoto H (2005) The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10(12):1139–1151. doi:10.1111/j.1365-2443.2005.00907.x

    Article  PubMed  CAS  Google Scholar 

  33. Lagirand-Cantaloube J, Cornille K, Csibi A, Batonnet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 4(3):e4973. doi:10.1371/journal.pone.0004973

    Article  PubMed  Google Scholar 

  34. Lee CF, Qiao M, Schroder K, Zhao Q, Asmis R (2010) Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ Res 106(9):1489–1497. doi:10.1161/CIRCRESAHA.109.215392

    Article  PubMed  CAS  Google Scholar 

  35. Li J, Johnson SE (2006) ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun 345(4):1425–1433

    Article  PubMed  CAS  Google Scholar 

  36. Londhe P, Davie JK (2011) Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle 1(1):14. doi:10.1186/2044-5040-1-14

    Article  PubMed  CAS  Google Scholar 

  37. Majmundar AJ, Skuli N, Mesquita RC, Kim MN, Yodh AG, Nguyen-McCarty M, Simon MC (2012) O(2) regulates skeletal muscle progenitor differentiation through phosphatidylinositol 3-kinase/AKT signaling. Mol Cell Biol 32(1):36–49. doi:10.1128/MCB.05857-11

    Article  PubMed  CAS  Google Scholar 

  38. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassegue B, San Martin A, Griendling KK (2011) NADPH oxidase 4 mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK and serum response factor. Free Radic Biol Med 50(2):354–362. doi:10.1016/j.freeradbiomed.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  39. Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA (2012) Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One 7(1):e29896. doi:10.1371/journal.pone.0029896

    Article  PubMed  CAS  Google Scholar 

  40. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10(10):1173–1183

    Article  PubMed  CAS  Google Scholar 

  41. Mofarrahi M, Brandes RP, Gorlach A, Hanze J, Terada LS, Quinn MT, Mayaki D, Petrof B, Hussain SN (2008) Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase. Antioxid Redox Signal 10(3):559–574. doi:10.1089/ars.2007.1792

    Article  PubMed  CAS  Google Scholar 

  42. Montarras D, Lindon C, Pinset C, Domeyne P (2000) Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biol Cell 92(8–9):565–572

    Article  PubMed  CAS  Google Scholar 

  43. Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genom 10(2):103–111. doi:10.1152/physiolgenomics.00011.2002

    CAS  Google Scholar 

  44. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. doi:10.1038/cr.2010.178

    Article  PubMed  CAS  Google Scholar 

  45. Myer A, Olson EN, Klein WH (2001) MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells. Dev Biol 229(2):340–350. doi:10.1006/dbio.2000.9985

    Article  PubMed  CAS  Google Scholar 

  46. Nishimura M, Nikawa T, Kawano Y, Nakayama M, Ikeda M (2008) Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes. Biochem Biophys Res Commun 367(3):603–608. doi:10.1016/j.bbrc.2008.01.006

    Article  PubMed  CAS  Google Scholar 

  47. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275(2):375–388. doi:10.1016/j.ydbio.2004.08.015

    Article  PubMed  CAS  Google Scholar 

  48. Pandey D, Fulton DJ (2011) Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol 300(4):H1336–H1344. doi:10.1152/ajpheart.01163.2010

    Article  PubMed  CAS  Google Scholar 

  49. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  50. Piao YJ, Seo YH, Hong F, Kim JH, Kim YJ, Kang MH, Kim BS, Jo SA, Jo I, Jue DM, Kang I, Ha J, Kim SS (2005) Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd = Retrieve&db = PubMed&dopt = Citation&list_uids = 15780757. Accessed 8/3/2012

  51. Poppek D, Grune T (2006) Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal 8(1–2):173–184. doi:10.1089/ars.2006.8.173

    Article  PubMed  CAS  Google Scholar 

  52. Potargowicz E, Szerszenowicz E, Staniszewska M, Nowak D (2005) [Mitochondria as an source of reactive oxygen species]. Postepy Hig Med Dosw (Online) 59:259–266

    Google Scholar 

  53. Powers SK, Duarte J, Kavazis AN, Talbert EE (2010) Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 95(1):1–9. doi:10.1113/expphysiol.2009.050526

    Article  PubMed  CAS  Google Scholar 

  54. Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(Pt 9):2129–2138. doi:10.1113/jphysiol.2010.201327

    Article  PubMed  CAS  Google Scholar 

  55. Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29(2):239–245. doi:10.1161/ATVBAHA.108.174219

    Article  PubMed  Google Scholar 

  56. Siu PM, Wang Y, Alway SE (2009) Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci 84(13–14):468–481. doi:10.1016/j.lfs.2009.01.014

    Article  PubMed  CAS  Google Scholar 

  57. Sukhanov S, Semprun-Prieto L, Yoshida T, Michael Tabony A, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci 342(2):143–147. doi:10.1097/MAJ.0b013e318222e620

    Article  PubMed  Google Scholar 

  58. Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, Watanabe H (2011) Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell–cell communication. Muscle Nerve 44(6):968–977. doi:10.1002/mus.22224

    Article  PubMed  CAS  Google Scholar 

  59. Wang HJ, Pan YX, Wang WZ, Zucker IH, Wang W (2009) NADPH oxidase-derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex. J Appl Physiol 107(2):450–459. doi:10.1152/japplphysiol.00262.2009

    Article  PubMed  CAS  Google Scholar 

  60. Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q (2009) Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 296(4):C711–C723. doi:10.1152/ajpcell.00442.2008

    Article  PubMed  CAS  Google Scholar 

  61. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111(Pt 6):769–779

    PubMed  CAS  Google Scholar 

  62. Yoshiko Y, Hirao K, Maeda N (2002) Differentiation in C(2)C(12) myoblasts depends on the expression of endogenous IGFs and not serum depletion. Am J Physiol Cell Physiol 283(4):C1278–C1286. doi:10.1152/ajpcell.00168.2002

    Article  PubMed  CAS  Google Scholar 

  63. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119(Pt 9):1824–1832. doi:10.1242/jcs.02908

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by USDA/NIFA award number 2010-34479-20715 “Increasing Shelf Life of Agricultural Commodities, ID.” The Optical Imaging Core at the University of Idaho has received support from the Idaho INBRE Program, NIH Grant Nos. P20 RR016454 (National Center for Research Resources) and P20 GM103408 (National Institute of General Medical Sciences), the M.J. Murdock Foundation, and the NIH-COBRE-Pathogenesis grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 378 kb)

ESM 2

(TIFF 788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, S., Peters, A.M., Norton, A.S. et al. Change in Nox4 expression is accompanied by changes in myogenic marker expression in differentiating C2C12 myoblasts. Pflugers Arch - Eur J Physiol 465, 1181–1196 (2013). https://doi.org/10.1007/s00424-013-1241-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1241-0

Keywords

Navigation