Skip to main content

Advertisement

Log in

Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Slow delayed rectifier potassium current (IKs) is important in action potential (AP) repolarization and repolarization reserve. We tested the hypothesis that there are sex-specific differences in IKs, AP, and their regulation by β-adrenergic receptors (β-AR’s) using whole-cell patch-clamp. AP duration (APD90) was significantly longer in control female (F) than in control male (M) myocytes. Isoproterenol (ISO, 500 nM) shortened APD90 comparably in M and F, and was largely reversed by β1-AR blocker CGP 20712A (CGP, 300 nM). Inhibition of IKs with chromanol 293B (10 μM) resulted in less APD prolongation in F at baseline (3.0 vs 8.9 %, p < 0.05 vs M) and even in the presence of ISO (5.4 vs 20.9 %, p < 0.05). This suggests that much of the ISO-induced APD abbreviation in F is independent of IKs. In F, baseline IKs was 42 % less and was more weakly activated by ISO (19 vs 68 % in M, p < 0.01). ISO enhancement of IKs was comparably attenuated by CGP in M and F. After ovariectomy, IKs in F had greater enhancement by ISO (72 %), now comparable to control M. After orchiectomy, IKs in M was only slightly enhanced by ISO (23 %), comparable to control F. Pretreatment with thapsigargin (to block SR Ca release) had bigger impact on ISO-induced APD shortening in F than that in M (p < 0.01). In conclusion, we found that there are sex differences in IKs, AP, and their regulation by β-AR’s that are modulated by sex hormones, suggesting the potential for sex-specific antiarrhythmic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abi-Gerges N, Small BG, Lawrence CL, Hammond TG, Valentin J-P, Pollard CE (2006) Gender differences in the slow delayed (IKs) but not in inward (IK1) rectifier K + currents of canine Purkinje fibre cardiac action potential: key roles for IKs, beta-adrenoceptor stimulation, pacing rate and gender. Br J Pharmacol 147:653–660

    Article  PubMed  CAS  Google Scholar 

  2. Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T (2005) Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation 112:1701–1710

    Article  PubMed  CAS  Google Scholar 

  3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80

    Article  PubMed  CAS  Google Scholar 

  4. Bassani RA, Bers DM (1995) Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophys J 68:2015–2022

    Article  PubMed  CAS  Google Scholar 

  5. Beran AV, Proctor KG, Sperling DR (1975) Hypothermia and rewarming induced by surface and He-O2 inhalate temperature control. J Appl Physiol 39:337–340

    PubMed  CAS  Google Scholar 

  6. Bers DM (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer, Dordrecht

    Book  Google Scholar 

  7. Bosch RF, Schneck AC, Kiehn J, Zhang W, Hambrock A, Eigenberger BW, Rub N, Gogel J, Mewis C, Seipel L, Kuhlkamp V (2002) Beta3-Adrenergic regulation of an ion channel in the heart-inhibition of the slow delayed rectifier potassium current I(Ks) in guinea pig ventricular myocytes. Cardiovasc Res 56:393–403

    Article  PubMed  CAS  Google Scholar 

  8. Bryant SM, Wan X, Shipsey SJ, Hart G (1998) Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res 40:322–331

    Article  PubMed  CAS  Google Scholar 

  9. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R, Kunzelmann K, Attali B, Stuhmer W (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br J Pharmacol 122:187–189

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Petranka J, Yamamura K, London RE, Steenbergen C, Murphy E (2003) Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 285:H2657–2662

    PubMed  CAS  Google Scholar 

  11. Chen L, Kurokawa J, Kass RS (2005) Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J Biol Chem 280:31347–31352

    Article  PubMed  CAS  Google Scholar 

  12. Chu SH, Goldspink P, Kowalski J, Beck J, Schwertz DW (2006) Effect of estrogen on calcium-handling proteins, beta-adrenergic receptors, and function in rat heart. Life Sci 79:1257–1267

    Article  PubMed  CAS  Google Scholar 

  13. Conrath CE, Opthof T (2006) Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects. Prog Biophys Mol Biol 92:269–307

    Article  PubMed  CAS  Google Scholar 

  14. Curl CL, Wendt IR, Kotsanas G (2001) Effects of gender on intracellular. Pflugers Arch 441:709–716

    Article  PubMed  CAS  Google Scholar 

  15. Desantiago J, Ai X, Islam M, Acuna G, Ziolo MT, Bers DM, Pogwizd SM (2008) Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ Res 102:1389–1397

    Article  PubMed  CAS  Google Scholar 

  16. Despa S, Bossuyt J, Han F, Ginsburg KS, Jia L-G, Kutchai H, Tucker AL, Bers DM (2005) Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252–259

    Article  PubMed  CAS  Google Scholar 

  17. Dilly KW, Kurokawa J, Terrenoire C, Reiken S, Lederer WJ, Marks AR, Kass RS (2004) Overexpression of beta2-adrenergic receptors cAMP-dependent protein kinase phosphorylates and modulates slow delayed rectifier potassium channels expressed in murine heart: evidence for receptor/channel co-localization. J Biol Chem 279:40778–40787

    Article  PubMed  CAS  Google Scholar 

  18. Drici MD, Burklow TR, Haridasse V, Glazer RI, Woosley RL (1996) Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 94:1471–1474

    Article  PubMed  CAS  Google Scholar 

  19. Drici MD, Clement N (2001) Is gender a risk factor for adverse drug reactions? The example of drug-induced long QT syndrome. Drug Saf 24:575–585

    Article  PubMed  CAS  Google Scholar 

  20. Emslie-Smith D, Sladden GE, Stirling GR (1959) The significance of changes in the electrocardiogram in hypothermia. Br Heart J 21:343–351

    Article  PubMed  CAS  Google Scholar 

  21. Fedida D, Braun AP, Giles WR (1991) Alpha 1-adrenoceptors reduce background K + current in rabbit ventricular myocytes. J Physiol 441:673–684

    PubMed  CAS  Google Scholar 

  22. Fregly MJ, Thrasher TN (1977) Response of heart rate to acute administration of isoproterenol in rats treated chronically with norethynodrel, ethinyl estradiol, and both combined. Endocrinology 100:148–154

    Article  PubMed  CAS  Google Scholar 

  23. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    Article  PubMed  CAS  Google Scholar 

  24. Gbadebo TD, Trimble RW, Khoo MS, Temple J, Roden DM, Anderson ME (2002) Calmodulin inhibitor W-7 unmasks a novel electrocardiographic parameter that predicts initiation of torsade de pointes. Circulation 105:770–774

    Article  PubMed  CAS  Google Scholar 

  25. Giles WR, Imaizumi Y (1988) Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 405:123–145

    PubMed  CAS  Google Scholar 

  26. Grandi E, Pasqualini FS, Bers DM (2010) A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology 48:112–121

    Article  PubMed  CAS  Google Scholar 

  27. Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, Zhang S (2009) Extracellular K + concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. J Clin Invest 119:2745–2757

    Article  PubMed  CAS  Google Scholar 

  28. Hicks CE, McCord MC, Blount SG Jr (1956) Electrocardiographic changes during hypothermia and circulatory occlusion. Circulation 13:21–28

    Article  PubMed  CAS  Google Scholar 

  29. James AF, Choisy SCM, Hancox JC (2007) Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol 94:265–319

    Article  PubMed  Google Scholar 

  30. Janse MJ, Coronel R, Opthof T (2011) Counterpoint: M cells do not have a functional role in the ventricular myocardium of the intact heart. Heart Rhythm 8:934–937

    Article  PubMed  Google Scholar 

  31. Jost N, Virag L, Bitay M, Takacs J, Lengyel C, Biliczki P, Nagy Z, Bogats G, Lathrop DA, Papp JG, Varro A (2005) Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 112:1392–1399

    Article  PubMed  Google Scholar 

  32. Kass RS (1997) Genetically induced reduction in small currents has major impact. Circulation 96:1720–1721

    PubMed  CAS  Google Scholar 

  33. Kathofer S, Zhang W, Karle C, Thomas D, Schoels W, Kiehn J (2000) Functional coupling of human beta 3-adrenoreceptors to the KvLQT1/MinK potassium channel. J Biol Chem 275:26743–26747

    PubMed  CAS  Google Scholar 

  34. Koumi S, Backer CL, Arentzen CE, Sato R (1995) beta-Adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts. J Clin Invest 96:2870–2881

    Article  PubMed  CAS  Google Scholar 

  35. Kurokawa J, Chen L, Kass RS (2003) Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A 100:2122–2127

    Article  PubMed  CAS  Google Scholar 

  36. Kurokawa J, Motoike HK, Rao J, Kass RS (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A 101:16374–16378

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann MH, Hardy S, Archibald D, Quart B, MacNeil DJ (1996) Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation 94:2535–2541

    Article  PubMed  CAS  Google Scholar 

  38. Lengyel C, Iost N, Virag L, Varro A, Lathrop DA, Papp JG (2001) Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration. Br J Pharmacol 132:101–110

    Article  PubMed  CAS  Google Scholar 

  39. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    Article  PubMed  CAS  Google Scholar 

  40. Liu XK, Katchman A, Drici MD, Ebert SN, Ducic I, Morad M, Woosley RL (1998) Gender difference in the cycle length-dependent QT and potassium currents in rabbits. J Pharmacol Exp Ther 285:672–679

    PubMed  CAS  Google Scholar 

  41. Liu XK, Katchman A, Whitfield BH, Wan G, Janowski EM, Woosley RL, Ebert SN (2003) In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovasc Res 57:28–36

    Article  PubMed  CAS  Google Scholar 

  42. Lu Z, Kamiya K, Opthof T, Yasui K, Kodama I (2001) Density and kinetics of I(Kr) and I(Ks) in guinea pig and rabbit ventricular myocytes explain different efficacy of I(Ks) blockade at high heart rate in guinea pig and rabbit: implications for arrhythmogenesis in humans. Circulation 104:951–956

    Article  PubMed  CAS  Google Scholar 

  43. Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH (1993) Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270:2590–2597

    Article  PubMed  CAS  Google Scholar 

  44. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  PubMed  CAS  Google Scholar 

  45. Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    Article  PubMed  CAS  Google Scholar 

  46. Pham TV, Sosunov EA, Gainullin RZ, Danilo P Jr, Rosen MR (2001) Impact of sex and gonadal steroids on prolongation of ventricular repolarization and arrhythmias induced by I(K)-blocking drugs. Circulation 103:2207–2212

    Article  PubMed  CAS  Google Scholar 

  47. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019

    Article  PubMed  CAS  Google Scholar 

  48. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167

    Article  PubMed  CAS  Google Scholar 

  49. Pratt CM, Camm AJ, Cooper W, Friedman PL, MacNeil DJ, Moulton KM, Pitt B, Schwartz PJ, Veltri EP, Waldo AL (1998) Mortality in the Survival With ORal D-sotalol (SWORD) trial: why did patients die? Am J Cardiol 81:869–876

    Article  PubMed  CAS  Google Scholar 

  50. Salata JJ, Jurkiewicz NK, Jow B, Folander K, Guinosso PJ Jr, Raynor B, Swanson R, Fermini B (1996) IK of rabbit ventricle is composed of two currents: evidence for IKs. Am J Physiol 271:H2477–2489

    PubMed  CAS  Google Scholar 

  51. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    Article  PubMed  CAS  Google Scholar 

  52. Sanguinetti MC, Jurkiewicz NK (1992) Role of external Ca2+ and K + in gating of cardiac delayed rectifier K + currents. Pflugers Archiv: European Journal of Physiology 420:180–186

    Article  PubMed  CAS  Google Scholar 

  53. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77–84

    Article  PubMed  CAS  Google Scholar 

  54. Sesti F, Goldstein SA (1998) Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol 112:651–663

    Article  PubMed  CAS  Google Scholar 

  55. So PP, Backx PH, Hu XD, Dorian P (2007) I(Ks) block by HMR 1556 lowers ventricular defibrillation threshold and reverses the repolarization shortening by isoproterenol without rate-dependence in rabbits. J Cardiovasc Electrophysiol 18:750–756

    Article  PubMed  Google Scholar 

  56. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411

    Article  PubMed  CAS  Google Scholar 

  57. Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS (2005) Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 96:e25–34

    Article  PubMed  CAS  Google Scholar 

  58. Thawornkaiwong A, Preawnim S, Wattanapermpool J (2003) Upregulation of beta 1-adrenergic receptors in ovariectomized rat hearts. Life Sci 72:1813–1824

    Article  PubMed  CAS  Google Scholar 

  59. Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vazquez AE, Young JN, Glatter KA, Chiamvimonvat N (2005) Differential expression of small-conductance Ca2 + -activated K + channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 289:H2714–2723

    Article  PubMed  CAS  Google Scholar 

  60. Valverde ER, Biagetti MO, Bertran GR, Arini PD, Bidoggia H, Quinteiro RA (2003) Developmental changes of cardiac repolarization in rabbits: implications for the role of sex hormones. Cardiovasc Res 57:625–631

    Article  PubMed  CAS  Google Scholar 

  61. Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol 88:93–102

    PubMed  CAS  Google Scholar 

  62. Virag L, Iost N, Opincariu M, Szolnoky J, Szecsi J, Bogats G, Szenohradszky P, Varro A, Papp JG (2001) The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res 49:790–797

    Article  PubMed  CAS  Google Scholar 

  63. Vizgirda VM, Wahler GM, Sondgeroth KL, Ziolo MT, Schwertz DW (2002) Mechanisms of sex differences in rat cardiac myocyte response to beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol 282:H256–263

    PubMed  CAS  Google Scholar 

  64. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA (1999) Repolarizing K + currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99:206–210

    Article  PubMed  CAS  Google Scholar 

  65. Volders PGA, Stengl M, van Opstal JM, Gerlach U, Spatjens RLHMG, Beekman JDM, Sipido KR, Vos MA (2003) Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation 107:2753–2760

    Article  PubMed  Google Scholar 

  66. Whalley DW, Wendt DJ, Starmer CF, Rudy Y, Grant AO (1994) Voltage-independent effects of extracellular K + on the Na + current and phase 0 of the action potential in isolated cardiac myocytes. Circ Res 75:491–502

    Article  PubMed  CAS  Google Scholar 

  67. Wu Y, Anderson ME (2002) Reduced repolarization reserve in ventricular myocytes from female mice. Cardiovasc Res 53:763–769

    Article  PubMed  CAS  Google Scholar 

  68. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H (2004) Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci 25:358–365

    Article  PubMed  CAS  Google Scholar 

  69. Xu X, Rials SJ, Wu Y, Salata JJ, Liu T, Bharucha DB, Marinchak RA, Kowey PR (2001) Left ventricular hypertrophy decreases slowly but not rapidly activating delayed rectifier potassium currents of epicardial and endocardial myocytes in rabbits. Circulation 103:1585–1590

    Article  PubMed  CAS  Google Scholar 

  70. Zygmunt AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68:424–437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Heart, Lung, and Blood Institute Grants R01HL073966 and R01HL046929 (to SMP) and partially supported by 5UL1 RR025777-03 from the NIH National Center for Research Resources.

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Pogwizd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Ai, X., Oster, R.A. et al. Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits. Pflugers Arch - Eur J Physiol 465, 805–818 (2013). https://doi.org/10.1007/s00424-012-1193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1193-9

Keywords

Navigation