Skip to main content

Advertisement

Log in

Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium

  • Ion channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The retinal pigment epithelium (RPE) expresses bestrophin-1 where mutant bestrophin cause retinal degenerations. Overexpression of bestrophin-1 demonstrated Ca2+-dependent Cl- channel function, whereas the RPE in bestrophin-1 knockout or mutant bestrophin-1 knock-in mice showed no change in Cl conductance. To account for these apparently mutually exclusive findings, we investigated the function of endogenously expressed bestrophin-1 in a short-time RPE cell culture system by means of immunocytochemistry, Ca2+ imaging, and siRNA knockdown. Immunocytochemical quantification of bestrophin-1 localization demonstrated 2.5 times higher co-localization with the endoplasmic reticulum (ER) Ca2+-sensor protein, Stim-1, than with the membrane protein β-catenin, implicating it in store-operated Ca2+ entry (SOCE). Ca2+ release from ER stores under extracellular Ca2+-free conditions using thapsigargin (1 μM) to inhibit endoplasmic Ca2+ ATPase (SERCA) followed by re-adjustment of extracellular Ca2+ to physiological levels activated SOCE, which was insensitive to the blocker of numerous transient receptor potential channels and voltage-dependent Ca2+ channels SKF96563 (1 μM). SOCE was augmented at 5 μM and inhibited at 75 μM by 2-aminoethoxydiphenyl borate which indicates the involvement Orai-1 channels. In confirmation, SOCE was decreased by siRNA knockdown of Orai-1 expression. SOCE amplitude was strongly reduced by siRNA knockdown of bestrophin-1 expression, which was due to neither changes in Stim-1/Orai-1 expression nor Stim-1/bestrophin-1 interaction. The amount of Ca2+ released by SERCA inhibition was reduced after siRNA knockdown of bestrophin-1, but not of Orai-1. In conclusion we found that a proportion of bestrophin-1 is functionally localized to ER Ca2+ stores where it influences the amount of Ca2+ and therefore Ca2+ signals which result from activation of Orai-1 via Stim-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ, Zhang S, Campochiaro PA, Zack DJ, Hughes BA (2004) Image processing with image. J Biophotonics Int 11(2):36ß42

    Google Scholar 

  2. Arden GB, Barrada A, Kelsey JH (1962) New clinical test of retinal function based upon the standing potential of the eye. Br J Ophthalmol 46(8):449–467

    Article  PubMed  CAS  Google Scholar 

  3. Bakall B, Marmorstein LY, Hoppe G, Peachey NS, Wadelius C, Marmorstein AD (2003) Expression and localization of bestrophin during normal mouse development. Invest Ophthalmol Vis Sci 44(8):3622–3628

    Article  PubMed  Google Scholar 

  4. Barro Soria R, Spitzner M, Schreiber R, Kunzelmann K (2009) Bestrophin-1 enables Ca2+-activated Cl conductance in epithelia. J Biol Chem 284(43):29405–29412. doi:10.1074/jbc.M605716200

    Article  PubMed  CAS  Google Scholar 

  5. Barro-Soria R, Aldehni F, Almaca J, Witzgall R, Schreiber R, Kunzelmann K (2010) ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 459(3):485–497. doi:10.1007/s00424-009-0745-0

    Article  PubMed  CAS  Google Scholar 

  6. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325. doi:10.1038/361315a0

    Article  PubMed  CAS  Google Scholar 

  7. Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    PubMed  CAS  Google Scholar 

  8. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339. doi:10.1016/j.cell.2007.11.039

    Article  PubMed  CAS  Google Scholar 

  9. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42(2):133–144. doi:10.1016/j.ceca.2007.03.002

    Article  PubMed  CAS  Google Scholar 

  10. Constable PA (2011) Nifedipine alters the light-rise of the electro-oculogram in man. Graefes Arch Clin Exp Ophthalmol 249(5):677–684. doi:10.1007/s00417-010-1604-6

    Article  PubMed  CAS  Google Scholar 

  11. Cordeiro S, Strauss O (2010) Expression of Orai genes and I(CRAC) activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 249(1):47–54. doi:10.1007/s00417-010-1445-3

    Article  PubMed  Google Scholar 

  12. Cordeiro S, Strauss O (2011) Expression of Orai genes and I(CRAC) activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 249(1):47–54. doi:10.1007/s00417-010-1445-3

    Article  PubMed  CAS  Google Scholar 

  13. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185. doi:10.1038/nature04702

    Article  PubMed  CAS  Google Scholar 

  14. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, Vollrath D (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26(3):270–271. doi:10.1038/81555

    Article  PubMed  CAS  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  16. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A, Murthy KR, Rathmann M, Kumaramanickavel G, Denton MJ, Gal A (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17(2):194–197. doi:10.1038/ng1097-194

    Article  PubMed  CAS  Google Scholar 

  17. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88(2):639–672. doi:10.1152/physrev.00022.2007

    Article  PubMed  CAS  Google Scholar 

  18. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533. doi:10.1146/annurev.immunol.021908.132550

    Article  PubMed  CAS  Google Scholar 

  19. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356. doi:10.1038/355353a0

    Article  PubMed  CAS  Google Scholar 

  20. Jentsch TJ, Maritzen T, Zdebik AA (2005) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115(8):2039–2046. doi:10.1172/JCI25470

    Article  PubMed  CAS  Google Scholar 

  21. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241. doi:10.1016/j.cub.2005.05.055

    Article  PubMed  CAS  Google Scholar 

  22. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 97(23):12758–12763. doi:10.1073/pnas.220402097

    Article  PubMed  CAS  Google Scholar 

  23. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127(5):577–589. doi:10.1085/jgp.200509473

    Article  PubMed  CAS  Google Scholar 

  24. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7(9):1517–1525

    Article  PubMed  CAS  Google Scholar 

  25. Martins JR, Kongsuphol P, Sammels E, Dahimene S, Aldehni F, Clarke LA, Schreiber R, de Smedt H, Amaral MD (1812) Kunzelmann K F508del-CFTR increases intracellular Ca(2+) signaling that causes enhanced calcium-dependent Cl(−) conductance in cystic fibrosis. Biochim Biophys Acta 11:1385–1392. doi:10.1016/j.bbadis.2011.08.008

    Google Scholar 

  26. Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani EJ, Mukkadan JK, Nancarrow D, Crabb JW, Denton MJ (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17(2):198–200. doi:10.1038/ng1097-198

    Article  PubMed  CAS  Google Scholar 

  27. Mergler S, Strauss O (2002) Stimulation of L-type Ca(2+) channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res 74(1):29–40. doi:10.1006/exer.2001.1128S0014483501911285

    Article  PubMed  CAS  Google Scholar 

  28. Milenkovic VM, Krejcova S, Reichhart N, Wagner A, Strauss O (2011) Interaction of bestrophin-1 and Ca2+ channel beta-subunits: identification of new binding domains on the bestrophin-1 C-terminus. PLoS One 6(4):e19364. doi:10.1371/journal.pone.0019364PONE-D-10-05789

    Article  PubMed  CAS  Google Scholar 

  29. Milenkovic VM, Rohrl E, Weber BH, Strauss O (2011) Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J Cell Sci 124(Pt 17):2988–2996. doi:10.1242/jcs.085878

    Article  PubMed  CAS  Google Scholar 

  30. Mullins RF, Oh KT, Heffron E, Hageman GS, Stone EM (2005) Late development of vitelliform lesions and flecks in a patient with best disease: clinicopathologic correlation. Arch Ophthalmol 123(11):1588–1594. doi:10.1001/archopht.123.11.1588

    Article  PubMed  Google Scholar 

  31. Neussert R, Muller C, Milenkovic VM, Strauss O (2010) The presence of bestrophin-1 modulates the Ca2+ recruitment from Ca2+ stores in the ER. Pflugers Arch 460(1):163–175. doi:10.1007/s00424-010-0840-2

    Article  PubMed  CAS  Google Scholar 

  32. Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9(5):399–410. doi:10.1038/nrd3136

    Article  PubMed  CAS  Google Scholar 

  33. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, Sandgren O, Forsman K, Holmgren G, Andreasson S, Vujic M, Bergen AA, McGarty-Dugan V, Figueroa D, Austin CP, Metzker ML, Caskey CT, Wadelius C (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19(3):241–247. doi:10.1038/915

    Article  PubMed  CAS  Google Scholar 

  34. Reichhart N, Milenkovic VM, Halsband CA, Cordeiro S, Strauss O (2010) Effect of bestrophin-1 on L-type Ca2+ channel activity depends on the Ca2+ channel beta-subunit. Exp Eye Res 91(5):630–639. doi:10.1016/j.exer.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  35. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445. doi:10.1083/jcb.200502019

    Article  PubMed  CAS  Google Scholar 

  36. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20(1):178–180. doi:10.1096/fj.05-4495fje

    PubMed  CAS  Google Scholar 

  37. Schindl R, Bergsmann J, Frischauf I, Derler I, Fahrner M, Muik M, Fritsch R, Groschner K, Romanin C (2008) 2-Aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 283(29):20261–20267. doi:10.1074/jbc.M803101200

    Article  PubMed  CAS  Google Scholar 

  38. Singh A, Hildebrand ME, Garcia E, Snutch TP (2010) The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 160(6):1464–1475. doi:10.1111/j.1476-5381.2010.00786.x

    Article  PubMed  CAS  Google Scholar 

  39. Stanton JB, Goldberg AF, Hoppe G, Marmorstein LY, Marmorstein AD (2006) Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim Biophys Acta 1758(2):241–247. doi:10.1016/j.bbamem.2006.01.024

    Article  PubMed  CAS  Google Scholar 

  40. Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60(4):327–346

    Article  PubMed  CAS  Google Scholar 

  41. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881. doi:10.1152/physrev.00021.2004

    Article  PubMed  CAS  Google Scholar 

  42. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99(6):4008–4013. doi:10.1073/pnas.05269299999/6/4008

    Article  PubMed  CAS  Google Scholar 

  43. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278(42):41114–41125. doi:10.1074/jbc.M306150200M306150200

    Article  PubMed  CAS  Google Scholar 

  44. Weingeist TA, Kobrin JL, Watzke RC (1982) Histopathology of Best’s macular dystrophy. Arch Ophthalmol 100(7):1108–1114

    Article  PubMed  CAS  Google Scholar 

  45. Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Prog Retin Eye Res 26(3):263–301. doi:10.1016/j.preteyeres.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  46. Wu J, Marmorstein AD, Striessnig J, Peachey NS (2007) Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol 97(5):3731–3735. doi:10.1152/jn.00146.2007

    Article  PubMed  CAS  Google Scholar 

  47. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229. doi:10.1038/nature05108

    Article  PubMed  CAS  Google Scholar 

  48. Yu K, Qu Z, Cui Y, Hartzell HC (2007) Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest Ophthalmol Vis Sci 48(10):4694–4705. doi:10.1167/iovs.07-0301

    Article  PubMed  Google Scholar 

  49. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC (2008) The best disease-linked Cl channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci 28(22):5660–5670. doi:10.1523/JNEUROSCI.0065-08.2008

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Y, Stanton JB, Wu J, Yu K, Hartzell HC, Peachey NS, Marmorstein LY, Marmorstein AD Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 19 (6):1108–1118. doi:10.1093/hmg/ddp583

  51. Zhang Y, Stanton JB, Wu J, Yu K, Hartzell HC, Peachey NS, Marmorstein LY, Marmorstein AD (2010) Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 19(6):1108–1118. doi:10.1093/hmg/ddp583

    Article  PubMed  CAS  Google Scholar 

  52. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362. doi:10.1073/pnas.0603161103

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Strauβ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, N.M., Tamm, E.R. & Strauβ, O. Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch - Eur J Physiol 465, 481–495 (2013). https://doi.org/10.1007/s00424-012-1181-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1181-0

Keywords

Navigation