Skip to main content

Advertisement

Log in

SOD1 gene transfer into paraventricular nucleus attenuates hypertension and sympathetic activity in spontaneously hypertensive rats

  • Molecular and Cellular Mechanisms of Disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Excessive sympathetic activity contributes to the initiation and progression of hypertension. Reactive oxygen species in the paraventricular nucleus (PVN) is involved in sympathetic overdrive and hypertension. The present study was designed to investigate whether superoxide dismutase 1 (SOD1) overexpression in the PVN attenuated sympathetic activation and hypertension. Adenoviral vectors containing human SOD1 or null adenoviral vectors were microinjected into the PVN of Wistar rats and spontaneously hypertensive rats (SHR). Significant depressor effects were observed from weeks 1 to 4 after SOD1 gene transfer in SHR. Acute experiments were carried out at the end of the 3rd week. In the PVN, superoxide anion and angiotensin II levels were increased while SOD1 activity and protein expression were decreased in SHR, which were attenuated by SOD1 overexpression in the PVN. However, SOD1 overexpression had no significant effect on the SOD2 activity in the PVN. The blood pressure response to ganglionic blockade, cardiac sympathetic nerve activity, and cardiac sympathetic afferent reflex (CSAR) were enhanced, and the plasma norepinephrine level was increased in SHR, which were prevented by SOD1 gene transfer in the PVN. Furthermore, SOD1 overexpression decreased the ratio of left ventricular weight to body weight, cross-sectional areas of myocardial cells, media thickness, and the media/lumen ratio of small arteries in the heart in SHR. These results indicate that SOD1 overexpression in the PVN reduces arterial blood pressure, attenuates excessive sympathetic activity and CSAR, and improves myocardial and vascular remodeling in SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bagnost T, Ma L, da Silva RF, Rezakhaniha R, Houdayer C, Stergiopulos N, Andre C, Guillaume Y, Berthelot A, Demougeot C (2010) Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res 87:569–577

    Article  PubMed  CAS  Google Scholar 

  2. Bell D, Kelso EJ, Argent CC, Lee GR, Allen AR, McDermott BJ (2004) Temporal characteristics of cardiomyocyte hypertrophy in the spontaneously hypertensive rat. Cardiovasc Pathol 13:71–78

    Article  PubMed  Google Scholar 

  3. Benarroch EE (2005) Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 15:254–263

    Article  PubMed  Google Scholar 

  4. Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP (2007) Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 115:1999–2005

    Article  PubMed  Google Scholar 

  5. Cassis P, Conti S, Remuzzi G, Benigni A (2010) Angiotensin receptors as determinants of life span. Pflugers Arch 459:325–332

    Article  PubMed  CAS  Google Scholar 

  6. Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY, Zhu GQ (2011) AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 96:94–103

    Article  PubMed  CAS  Google Scholar 

  7. Ciriello J, Kline RL, Zhang TX, Caverson MM (1984) Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 310:355–359

    Article  PubMed  CAS  Google Scholar 

  8. Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 3:219–223

    Article  PubMed  CAS  Google Scholar 

  9. Ding Y, Li YL, Zimmerman MC, Davisson RL, Schultz HD (2009) Role of CuZn superoxide dismutase on carotid body function in heart failure rabbits. Cardiovasc Res 81:678–685

    Article  PubMed  CAS  Google Scholar 

  10. Du YH, Chen AF (2007) A “love triangle” elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol 102:9–10

    Article  PubMed  CAS  Google Scholar 

  11. Duan YC, Xu B, Shi Z, Gao J, Zhang SJ, Wang W, Chen Q, Zhu GQ (2009) Nucleus of solitary tract mediates cardiac sympathetic afferent reflex in rats. Pflugers Arch 459:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Dumasius V, Jameel M, Burhop J, Meng FJ, Welch LC, Mutlu GG, Factor P (2003) In vivo timing of onset of transgene expression following adenoviral-mediated gene transfer. Virology 308:243–249

    Article  PubMed  CAS  Google Scholar 

  13. Esler M, Lambert E, Schlaich M (2010) Point: chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 109:1996–1998

    Article  PubMed  Google Scholar 

  14. Fan ZD, Zhang L, Shi Z, Gan XB, Gao XY, Zhu GQ (2012) Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther 19:810–817

    Article  PubMed  CAS  Google Scholar 

  15. Fisher JP, Fadel PJ (2010) Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension. Exp Physiol 95:572–580

    Article  PubMed  CAS  Google Scholar 

  16. Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, Ogasawara K, Aizawa T, Yamakado M, Nagai R, Ohno M (2008) Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 29:1267–1274

    Article  PubMed  CAS  Google Scholar 

  17. Fujita M, Ando K, Nagae A, Fujita T (2007) Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension 50:360–367

    Article  PubMed  CAS  Google Scholar 

  18. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  PubMed  CAS  Google Scholar 

  19. Gao J, Zhong MK, Fan ZD, Yuan N, Zhou YB, Zhang F, Gao XY, Zhu GQ (2012) SOD1 overexpression in paraventricular nucleus improves post-infarct myocardial remodeling and ventricular function. Pflugers Arch 463:297–307

    Article  PubMed  CAS  Google Scholar 

  20. Gao L, Wang W, Liu D, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102

    Article  PubMed  Google Scholar 

  21. Goldstein DS (1983) Plasma catecholamines and essential hypertension. An analytical review. Hypertension 5:86–99

    Article  PubMed  CAS  Google Scholar 

  22. Graham D, McBride MW, Brain NJ, Dominiczak AF (2005) Congenic/consomic models of hypertension. Methods Mol Med 108:3–15

    PubMed  Google Scholar 

  23. Grassi G, Seravalle G, Quarti-Trevano F (2010) The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 95:581–586

    Article  PubMed  Google Scholar 

  24. Guo ZL, Moazzami AR (2004) Involvement of nuclei in the hypothalamus in cardiac sympathoexcitatory reflexes in cats. Brain Res 1006:36–48

    Article  PubMed  CAS  Google Scholar 

  25. Han Y, Fan ZD, Yuan N, Xie GQ, Gao J, De W, Gao XY, Zhu GQ (2011) Superoxide anions in paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. J Appl Physiol 110:646–652

    Article  PubMed  Google Scholar 

  26. Han Y, Yuan N, Zhang SJ, Gao J, Shi Z, Zhou YB, Gao XY, Zhu GQ (2011) c-Src in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats. Pflugers Arch 461:437–446

    Article  PubMed  CAS  Google Scholar 

  27. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  PubMed  CAS  Google Scholar 

  28. Levick SP, Murray DB, Janicki JS, Brower GL (2010) Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension 55:270–276

    Article  PubMed  CAS  Google Scholar 

  29. Li DP, Pan HL (2007) Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 49:916–925

    Article  PubMed  CAS  Google Scholar 

  30. Malliani A, Montano N (2002) Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39:63–68

    Article  PubMed  CAS  Google Scholar 

  31. Mancia G, Grassi G, Giannattasio C, Seravalle G (1999) Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34:724–728

    Article  PubMed  CAS  Google Scholar 

  32. Messerli FH, Williams B, Ritz E (2007) Essential hypertension. Lancet 370:591–603

    Article  PubMed  CAS  Google Scholar 

  33. Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  PubMed  CAS  Google Scholar 

  34. Mischel NA, Mueller PJ (2011) (In)activity-dependent alterations in resting and reflex control of splanchnic sympathetic nerve activity. J Appl Physiol 111:1854–1862

    Article  PubMed  Google Scholar 

  35. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T (2009) Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 119:978–986

    Article  PubMed  CAS  Google Scholar 

  36. Preuss HG, Echard B, Bagchi D, Perricone NV (2010) Maitake mushroom extracts ameliorate progressive hypertension and other chronic metabolic perturbations in aging female rats. Int J Med Sci 7:169–180

    Article  PubMed  Google Scholar 

  37. Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes J III, Feinleib M, Castelli WP (1987) The spectrum of left ventricular hypertrophy in a general population sample: the Framingham Study. Circulation 75:I26–I33

    PubMed  CAS  Google Scholar 

  38. Shi Z, Chen AD, Xu Y, Chen Q, Gao XY, Wang W, Zhu GQ (2009) Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 458:247–257

    Article  PubMed  CAS  Google Scholar 

  39. Shi Z, Chen WW, Xiong XQ, Han Y, Zhou YB, Zhang F, Gao XY, Zhu GQ (2012) Sympathetic activation by chemical stimulation of white adipose tissues in rats. J Appl Physiol 112:1008–1014

    Article  PubMed  CAS  Google Scholar 

  40. Smith SH, Bishop SP (1986) Selection criteria for drug-treated animals in two-kidney, one clip renal hypertension. Hypertension 8:700–705

    Article  PubMed  CAS  Google Scholar 

  41. Takeda K, Nakata T, Takesako T, Itoh H, Hirata M, Kawasaki S, Hayashi J, Oguro M, Sasaki S, Nakagawa M (1991) Sympathetic inhibition and attenuation of spontaneous hypertension by PVN lesions in rats. Brain Res 543:296–300

    Article  PubMed  CAS  Google Scholar 

  42. Toscano MG, Romero Z, Munoz P, Cobo M, Benabdellah K, Martin F (2011) Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther 18:117–127

    Article  PubMed  CAS  Google Scholar 

  43. Xiong XQ, Chen WW, Han Y, Zhou YB, Zhang F, Gao XY, Zhu GQ (2012) Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension. Hypertension 60:1280–1286

    Google Scholar 

  44. Yu Y, Zhong MK, Li J, Sun XL, Xie GQ, Wang W, Zhu GQ (2007) Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch 454:551–557

    Article  PubMed  CAS  Google Scholar 

  45. Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ (2008) Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 93:746–753

    Article  PubMed  Google Scholar 

  46. Zhou LM, Shi Z, Gao J, Han Y, Yuan N, Gao XY, Zhu GQ (2010) Angiotensin-(1-7) and angiotensin II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats. Pflugers Arch 459:681–688

    Article  PubMed  CAS  Google Scholar 

  47. Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W, Gao XY, Chen Q (2009) Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol 94:785–794

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation (31171095, 31271213, and 30870908), Science and Technology Foundation from Nanjing Medical University (09NJMUZ04), Natural Science Foundation from the Department of Education of Jiangsu Province (10KJB310004), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qing Zhu.

Additional information

Ning Yuan and Feng Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, N., Zhang, F., Zhang, LL. et al. SOD1 gene transfer into paraventricular nucleus attenuates hypertension and sympathetic activity in spontaneously hypertensive rats. Pflugers Arch - Eur J Physiol 465, 261–270 (2013). https://doi.org/10.1007/s00424-012-1173-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1173-0

Keywords

Navigation