Skip to main content
Log in

Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium

  • Sensory physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abumrad NA (2005) CD36 may determine our desire for dietary fats. J Clin Invest 115(11):2965–2967

    Article  PubMed  CAS  Google Scholar 

  2. Baillie AG, Coburn CT, Abumrad NA (1996) Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J Membr Biol 153(1):75–81

    Article  PubMed  CAS  Google Scholar 

  3. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102(34):12248–12252

    Article  PubMed  CAS  Google Scholar 

  4. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208

    Article  PubMed  CAS  Google Scholar 

  5. Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11(7):772–779

    Article  PubMed  CAS  Google Scholar 

  6. Bhattacharya MR, Bautista DM, Wu K, Haeberle H, Lumpkin EA, Julius D (2008) Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 105(50):20015–20020

    Article  PubMed  CAS  Google Scholar 

  7. Bray GA, Popkin BM (1998) Dietary fat intake does affect obesity! Am J Clin Nutr 68(6):1157–1173

    PubMed  CAS  Google Scholar 

  8. Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr 70(4):572–573

    PubMed  CAS  Google Scholar 

  9. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311

    Article  PubMed  CAS  Google Scholar 

  10. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    Article  PubMed  CAS  Google Scholar 

  11. Calder PC, Deckelbaum RJ (2006) CD36: taste the difference? Curr Opin Clin Nutr Metab Care 9(2):77–78

    Article  PubMed  Google Scholar 

  12. Card JP, Enquist LW (2001) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci Chapter 1:Unit 15

    Google Scholar 

  13. Card JP, Rinaman L, Schwaber JS, Miselis RR, Whealy ME, Robbins AK, Enquist LW (1990) Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J Neurosci 10(6):1974–1994

    PubMed  CAS  Google Scholar 

  14. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30(25):8376–8382

    Article  PubMed  CAS  Google Scholar 

  15. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  PubMed  CAS  Google Scholar 

  16. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190(3):285–296

    Article  PubMed  CAS  Google Scholar 

  17. Damann N, Rothermel M, Klupp BG, Mettenleiter TC, Hatt H, Wetzel CH (2006) Chemosensory properties of murine nasal and cutaneous trigeminal neurons identified by viral tracing. BMC Neurosci. doi:10.1186/1471-2202-7-46

    Article  PubMed  Google Scholar 

  18. Drewnowski A, Greenwood MR (1983) Cream and sugar: human preferences for high-fat foods. Physiol Behav 30(4):629–633

    Article  PubMed  CAS  Google Scholar 

  19. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21(4):316–321

    Article  PubMed  CAS  Google Scholar 

  20. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T (1997) Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 414(2):461–464

    Article  PubMed  CAS  Google Scholar 

  21. Gilbertson TA, Fontenot DT, Liu L, Zhang H, Monroe WT (1997) Fatty acid modulation of K + channels in taste receptor cells: gustatory cues for dietary fat. Am J Physiol 272(4 Pt 1):C1203–1210

    PubMed  CAS  Google Scholar 

  22. Gilbertson TA, Liu L, Kim I, Burks CA, Hansen DR (2005) Fatty acid responses in taste cells from obesity-prone and -resistant rats. Physiol Behav 86(5):681–690

    Article  PubMed  CAS  Google Scholar 

  23. Gilbertson TA, Liu L, York DA, Bray GA (1998) Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855:165–168

    Article  PubMed  CAS  Google Scholar 

  24. Gilbertson TA, Yu T, Shah BP (2010) Gustatory mechanisms for fat detection. In: Montmayeur J-P, le-Coutre J (eds) Fat detection: taste, texture, and post ingestive effects. Taylor & Francis, Boca Raton, pp 83–104

    Google Scholar 

  25. Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31(10):1847–1851

    Article  PubMed  CAS  Google Scholar 

  26. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11(1):90–94

    Article  PubMed  CAS  Google Scholar 

  27. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422(6928):173–176

    Article  PubMed  CAS  Google Scholar 

  28. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265

    Article  PubMed  CAS  Google Scholar 

  29. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108(3):421–430

    Article  PubMed  CAS  Google Scholar 

  30. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27(37):9874–9884

    Article  PubMed  CAS  Google Scholar 

  31. Kinnamon SC (2011) Taste receptor signalling—from tongues to lungs. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2011.02308.x

  32. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115(11):3177–3184

    Article  PubMed  CAS  Google Scholar 

  33. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140(3):903–912

    Article  PubMed  CAS  Google Scholar 

  34. Liu L, Chang GQ, Jiao YQ, Simon SA (1998) Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res 809(2):238–245

    Article  PubMed  CAS  Google Scholar 

  35. Liu L, Simon SA (2000) Capsaicin, acid and heat-evoked currents in rat trigeminal ganglion neurons: relationship to functional VR1 receptors. Physiol Behav 69(3):363–378

    Article  PubMed  CAS  Google Scholar 

  36. Liu P, Shah BP, Croasdell S, Gilbertson TA (2011) Transient receptor potential channel type m5 is essential for fat taste. J Neurosci 31(23):8634–8642

    Article  PubMed  CAS  Google Scholar 

  37. Matsumura S, Mizushige T, Yoneda T, Iwanaga T, Tsuzuki S, Inoue K, Fushiki T (2007) GPR expression in the rat taste bud relating to fatty acid sensing. Biomed Res 28(1):49–55

    Article  PubMed  CAS  Google Scholar 

  38. Mattes RD (2010) Fat taste in humans: is it a primary? In: Montmayeur J-P, le-Coutre J (eds) Fat detection: taste, texture, and post ingestive effects. Taylor & Francis, Boca Raton, pp 167–193

    Google Scholar 

  39. McCarthy KM, Tank DW, Enquist LW (2009) Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog 5(10):e1000640. doi:10.1371/journal.ppat.1000640

    Article  PubMed  Google Scholar 

  40. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  PubMed  CAS  Google Scholar 

  41. Milligan G, Stoddart LA, Brown AJ (2006) G protein-coupled receptors for free fatty acids. Cell Signal 18(9):1360–1365

    Article  PubMed  CAS  Google Scholar 

  42. Mizushige T, Inoue K, Fushiki T (2007) Why is fat so tasty? Chemical reception of fatty acid on the tongue. J Nutr Sci Vitaminol (Tokyo) 53(1):1–4

    Article  CAS  Google Scholar 

  43. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  PubMed  CAS  Google Scholar 

  44. Perez CA, Stanley SA, Wysocki RW, Havranova J, Ahrens-Nicklas R, Onyimba F, Friedman JM (2011) Molecular annotation of integrative feeding neural circuits. Cell Metab 13(2):222–232

    Article  PubMed  CAS  Google Scholar 

  45. Rayasam GV, Tulasi VK, Davis JA, Bansal VS (2007) Fatty acid receptors as new therapeutic targets for diabetes. Expert Opin Ther Targets 11(5):661–671

    Article  PubMed  CAS  Google Scholar 

  46. Rolls ET, Critchley HD, Browning AS, Hernadi I, Lenard L (1999) Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci 19(4):1532–1540

    PubMed  CAS  Google Scholar 

  47. Rothermel M, Schobel N, Damann N, Klupp BG, Mettenleiter TC, Hatt H, Wetzel CH (2007) Anterograde transsynaptic tracing in the murine somatosensory system using Pseudorabies virus (PrV): a "live-cell"-tracing tool for analysis of identified neurons in vitro. J Neurovirol 13(6):579–585

    Article  PubMed  CAS  Google Scholar 

  48. Sclafani A, Ackroff K, Abumrad NA (2007) CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol 293(5):R1823–1832

    Article  PubMed  CAS  Google Scholar 

  49. Sprous D, Palmer KR (2010) The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential. Prog Mol Biol Transl Sci 91:151–208

    Article  PubMed  CAS  Google Scholar 

  50. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829

    Article  PubMed  CAS  Google Scholar 

  51. Verhagen JV, Rolls ET, Kadohisa M (2003) Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol 90(3):1514–1525

    Article  PubMed  Google Scholar 

  52. Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281(45):34457–34464

    Article  PubMed  CAS  Google Scholar 

  53. Wang YY, Chang RB, Liman ER (2010) TRPA1 is a component of the nociceptive response to CO2. J Neurosci 30(39):12958–12963

    Article  PubMed  CAS  Google Scholar 

  54. Yang KT, Chen WP, Chang WL, Su MJ, Tsai KL (2005) Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes. Biochem Biophys Res Commun 331(2):603–613

    Article  PubMed  CAS  Google Scholar 

  55. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584(11):2381–238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project described was partially supported by award number R01DK059611 (T.A.G.) from the National Institute of Diabetes and Digestive and Kidney Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health. Additional support was provided by project #630 from the Utah Agricultural Experiment Station and from International Flavors & Fragrances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Gilbertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Shah, B.P., Hansen, D.R. et al. Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium. Pflugers Arch - Eur J Physiol 464, 227–237 (2012). https://doi.org/10.1007/s00424-012-1116-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1116-9

Keywords

Navigation