Skip to main content

Advertisement

Log in

Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Contrasting information suggests either almost complete depletion of sarcoplasmic reticulum (SR) Ca2+ or significant residual Ca2+ concentration after prolonged depolarization of the skeletal muscle fiber. The primary obstacle to resolving this controversy is the lack of genetically encoded Ca2+ indicators targeted to the SR that exhibit low-Ca2+ affinity, a fast biosensor: Ca2+ off-rate reaction, and can be expressed in myofibers from adult and older adult mammalian species. This work used the recently designed low-affinity Ca2+ sensor (Kd = 1.66 mM in the myofiber) CatchER (calcium sensor for detecting high concentrations in the ER) targeted to the SR, to investigate whether prolonged skeletal muscle fiber depolarization significantly alters residual SR Ca2+ with aging. We found CatchER a proper tool to investigate SR Ca2+ depletion in young adult and older adult mice, consistently tracking SR luminal Ca2+ release in response to brief and repetitive stimulation. We evoked SR Ca2+ release in whole-cell voltage-clamped flexor digitorum brevis muscle fibers from young and old FVB mice and tested the maximal SR Ca2+ release by directly activating the ryanodine receptor (RyR1) with 4-chloro-m-cresol in the same myofibers. Here, we report for the first time that the Ca2+ remaining in the SR after prolonged depolarization (2 s) in myofibers from aging (~220 μM) was larger than young (~132 μM) mice. These experiments indicate that SR Ca2+ is far from fully depleted under physiological conditions throughout life, and support the concept of excitation–contraction uncoupling in functional senescent myofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ER/SR:

Endoplasmic/sarcoplasmic reticulum

EGFP:

Enhanced green fluorescence protein

FDB:

Flexor digitorum brevis

RyR1:

Ryanodine receptor-isoform-1

4-CmC:

4-Chloro-m-cresol

TEA:

Tetraethylammonium

di-8-ANEPPS:

di-8-amino naphthyl ethenyl pyridinium

CPA:

Cyclopiazonic acid

CatchER:

Calcium sensor for detecting high concentrations in the ER

GECI:

Genetically encoded Ca2+ biosensor

References

  1. Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJ (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci U S A 107:22326–22331

    Article  PubMed  CAS  Google Scholar 

  2. Conti A, Gorza L, Sorrentino V (1996) Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J 316(Pt 1):19–23

    PubMed  CAS  Google Scholar 

  3. Delbono O (2011) Excitation–contraction coupling regulation in aging skeletal muscle. In: Lynch GS (ed) Sarcopenia—age-related muscle wasting and weakness. Mechanisms and treatment. Springer, Victoria, pp 113–134

    Chapter  Google Scholar 

  4. Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca(2+) concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34:109–119

    Article  PubMed  CAS  Google Scholar 

  5. DiFranco M, Quinonez M, DiGregorio DA, Kim AM, Pacheco R, Vergara JL (1999) Inverted double-gap isolation chamber for high-resolution calcium fluorimetry in skeletal muscle fibers. Pflugers Arch 438:412–418

    Article  PubMed  CAS  Google Scholar 

  6. DiFranco M, Neco P, Capote J, Meera P, Vergara JL (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47:281–288

    Article  PubMed  CAS  Google Scholar 

  7. Fryer MW, Stephenson DG (1996) Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 493(Pt 2):357–370

    PubMed  CAS  Google Scholar 

  8. González A, Ríos E (1993) Perchlorate enhances transmission in skeletal muscle excitation–contraction coupling. J Gen Physiol 102(3):373–421

    Article  PubMed  Google Scholar 

  9. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  10. Hidalgo C, Donoso P, Rodriguez PH (1996) Protons induce calsequestrin conformational changes. Biophys J 71:2130–2137

    Article  PubMed  CAS  Google Scholar 

  11. Jimenez-Moreno R, Wang ZM, Gerring R, Delbono O (2008) Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 94:3178–3188

    Article  PubMed  CAS  Google Scholar 

  12. Jimenez-Moreno R, Wang ZM, Messi ML, Delbono O (2010) Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER. Pflugers Arch 459:725–735

    Article  PubMed  CAS  Google Scholar 

  13. Jones LM, Yang W, Maniccia AW, Harrison A, van der Merwe PA, Yang JJ (2008) Rational design of a novel calcium-binding site adjacent to the ligand-binding site on CD2 increases its CD48 affinity. Protein Sci 17:439–449

    Article  PubMed  CAS  Google Scholar 

  14. Kabbara AA, Allen DG (1999) Measurement of sarcoplasmic reticulum Ca2+ content in intact amphibian skeletal muscle fibres with 4-chloro-m-cresol. Cell Calcium 25:227–235

    Article  PubMed  CAS  Google Scholar 

  15. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287

    Article  PubMed  CAS  Google Scholar 

  16. Melzer W, Herrmann-Frank A, Luttgau HC (1995) The role of Ca2+ ions in excitation–contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241:59–116

    PubMed  Google Scholar 

  17. Owen VJ, Lamb GD, Stephenson DG, Fryer MW (1997) Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad. J Physiol 498(Pt 3):571–586

    PubMed  CAS  Google Scholar 

  18. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  19. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  20. Pape PC, Jong DS, Chandler WK (1995) Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 106:259–336

    Article  PubMed  CAS  Google Scholar 

  21. Park KS, Poburko D, Wollheim CB, Demaurex N (2009) Amiloride derivatives induce apoptosis by depleting ER Ca(2+) stores in vascular endothelial cells. Br J Pharmacol 156:1296–1304

    Article  PubMed  CAS  Google Scholar 

  22. Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, Delbono O (2004) External Ca2+-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 560(1):137–157

    Article  PubMed  CAS  Google Scholar 

  23. Picht E, DeSantiago J, Blatter LA, Bers DM (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 99:740–748

    Article  PubMed  CAS  Google Scholar 

  24. Posterino GS, Lamb GD (2003) Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres. J Physiol 551:219–237

    Article  PubMed  CAS  Google Scholar 

  25. Renganathan M, Messi ML, Delbono O (1997) Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157:247–253

    Article  PubMed  CAS  Google Scholar 

  26. Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 32:307–319

    Article  PubMed  CAS  Google Scholar 

  27. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586

    Article  PubMed  CAS  Google Scholar 

  28. Rudolf R, Magalhaes PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173:187–193

    Article  PubMed  CAS  Google Scholar 

  29. Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594

    Article  PubMed  CAS  Google Scholar 

  30. Shirokova N, Garcia J, Pizarro G, Rios E (1996) Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol 107:1–18

    Article  PubMed  CAS  Google Scholar 

  31. Somlyo AV, Gonzalez-Serratos HG, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol 90:577–594

    Article  PubMed  CAS  Google Scholar 

  32. Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Rios E (2011) Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. J Gen Physiol 138:231–247

    Article  PubMed  CAS  Google Scholar 

  33. Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Rios E (2011) D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol 138:211–229

    Article  PubMed  CAS  Google Scholar 

  34. Tang S, Wong H-C, Wang ZM, Huang Y, Zou J, Zhuo Y, Pennati A, Gadda G, Delbono O, Yang JJ (2011) Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci 13:16265–16270

    Article  Google Scholar 

  35. Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O (2009) Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 8:584–594

    Article  PubMed  CAS  Google Scholar 

  36. Treves S, Vukcevic M, Maj M, Thurnheer R, Mosca B, Zorzato F (2009) Minor sarcoplasmic reticulum membrane components that modulate excitation–contraction coupling in striated muscles. J Physiol 587:3071–3079

    Article  PubMed  CAS  Google Scholar 

  37. Ursu D, Schuhmeier RP, Melzer W (2005) Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse. J Physiol 562:347–365

    Article  PubMed  CAS  Google Scholar 

  38. Volpe P, Simon BJ (1991) The bulk of Ca2+ released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin. FEBS Lett 278:274–278

    Article  PubMed  CAS  Google Scholar 

  39. Wang ZM, Messi ML, Delbono O (1999) Patch-clamp recording of charge movement, Ca2+ current and Ca2+ transients in adult skeletal muscle fibers. Biophys J 77:2709–2716

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z-M, Messi ML, Delbono O (2000) L-type Ca2+ channel charge movement and intracellular Ca2+ in skeletal muscle fibers from aging mice. Biophys J 78:1947–1954

    Article  PubMed  CAS  Google Scholar 

  41. Woods CE, Novo D, DiFranco M, Capote J, Vergara JL (2005) Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol 568:867–880

    Article  PubMed  CAS  Google Scholar 

  42. Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A, Jaggar JH (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102:1118–1126

    Article  PubMed  CAS  Google Scholar 

  43. Ziman AP, Ward CW, Rodney GG, Lederer WJ, Bloch RJ (2010) Quantitative measurement of Ca(2)(+) in the sarcoplasmic reticulum lumen of mammalian skeletal muscle. Biophys J 99:2705–2714

    Article  PubMed  CAS  Google Scholar 

  44. Zou J, Hofer AM, Lurtz MM, Gadda G, Ellis AL, Chen N, Huang Y, Holder A, Ye Y, Louis CF, Welshhans K, Rehder V, Yang JJ (2007) Developing sensors for real-time measurement of high Ca2+ concentrations. Biochemistry 46:12275–12288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from the National Institutes of Health/National Institute on Aging AG07157, AG33385, and AG15820 to Osvaldo Delbono; and EB007268 and GM081749 to Jenny Yang, and the Wake Forest University Claude D. Pepper Older Americans Independence Center (P30-AG21332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delbono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZM., Tang, S., Messi, M.L. et al. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch - Eur J Physiol 463, 615–624 (2012). https://doi.org/10.1007/s00424-012-1073-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1073-3

Keywords

Navigation