Skip to main content

Advertisement

Log in

Regulation of voltage-gated sodium current by endogenous Src family kinases in cochlear spiral ganglion neurons in culture

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Voltage-gated sodium (Na+) and potassium (K+) channels have been found to be regulated by Src family kinases (SFKs). However, how these channels are regulated by SFKs in cochlear spiral ganglion neurons (SGNs) remains unknown. Here, we report that altering the activity of endogenous SFKs modulated voltage-gated Na+, but not K+, currents recorded in embryonic SGNs in culture. Voltage-gated Na+ current was suppressed by inhibition of endogenous SFKs or just Src and potentiated by the activation of these enzymes. Detailed investigations showed that under basal conditions, SFK inhibitor application did not significantly affect the voltage-dependent activation, but shifted the steady-state inactivation curves of Na+ currents and delayed the recovery of Na+ currents from inactivation. Application of Src specific inhibitor, Src40–58, not only shifted the inactivation curve but also delayed the recovery of Na+ currents and moved the voltage-dependent activation curve towards the left. The pre-inhibition of SFKs occluded all the effects induced by Src40–58 application, except the left shift of the activation curve. The activation of SFKs did not change either steady-state inactivation or recovery of Na+ currents, but caused the left shift of the activation curve. SFK inhibitor application effectively prevented all the effects induced by SFK activation, suggesting that both the voltage-dependent activation and steady-state inactivation of Na+ current are subjects of SFK regulation. The different effects induced by activation versus inhibition of SFKs implied that under basal conditions, endogenously active and inactive SFKs might be differentially involved in the regulation of voltage-gated Na+ channels in SGNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Ahern CA, Zhang JF, Wookalis MJ, Horn R (2005) Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase. Circ Res 96:991–998

    Article  PubMed  CAS  Google Scholar 

  2. Ahn M, Beacham D, Westenbroek RE, Scheuer T, Catterall WA (2007) Regulation of Na(v)1.2 channels by brain-derived neurotrophic factor, TrkB, and associated Fyn kinase. J Neurosci 27:11533–11542

    Article  PubMed  CAS  Google Scholar 

  3. Alioua A, Mahajan A, Nishimaru K, Zarei MM, Stefani E, Toro L (2002) Coupling of c-Src to large conductance voltage- and Ca2+-activated K+ channels as a new mechanism of agonist-induced vasoconstriction. Proc Natl Acad Sci U S A 99:14560–14565

    Article  PubMed  CAS  Google Scholar 

  4. Bain J, McLauchlan H, Elliott M, Cohen P (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed  CAS  Google Scholar 

  5. Beacham D, Ahn M, Catterall WA, Scheuer T (2007) Sites and molecular mechanisms of modulation of Na(v)1.2 channels by Fyn tyrosine kinase. J Neurosci 27:11543–11551

    Article  PubMed  CAS  Google Scholar 

  6. Bielefeld EC, Hynes S, Pryznosch D, Liu J, Coleman JK, Henderson D (2005) A comparison of the protective effects of systemic administration of a pro-glutathione drug and a Src-PTK inhibitor against noise-induced hearing loss. Noise Health 7:24–30

    Article  PubMed  Google Scholar 

  7. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L, Courtneidge SA (2000) SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20:9018–9027

    Article  PubMed  CAS  Google Scholar 

  8. Bradshaw JM (2010) The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 22:1175–1184

    Article  PubMed  CAS  Google Scholar 

  9. Brown MT, Cooper JA (1996) Regulation, substrates and functions of Src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  10. Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  PubMed  CAS  Google Scholar 

  11. Catterall WA (1991) Structure and function of voltage-gated sodium and calcium channels. Curr Opin Neurobiol 1:5–13

    Article  PubMed  CAS  Google Scholar 

  12. Cayabyab FS, Khanna R, Jones OT, Schlichter LC (2000) Suppression of the rat microglia Kv1.3 current by Src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci 12:1949–1960

    Article  PubMed  CAS  Google Scholar 

  13. Chahine M, Ziane R, Vijayaragavan K, Okamura Y (2005) Regulation of Na v channels in sensory neurons. Trends Pharmacol Sci 26:496–502

    Article  PubMed  CAS  Google Scholar 

  14. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  CAS  Google Scholar 

  15. d’Alcantara P, Schiffmann SN, Swillens S (1999) Effect of protein kinase A-induced phosphorylation on the gating mechanism of the brain Na+ channel: model fitting to whole-cell current traces. Biophys J 77:204–216

    Article  PubMed  Google Scholar 

  16. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281:H1835–H1862

    PubMed  CAS  Google Scholar 

  17. Fang XQ, Xu J, Feng S, Groveman BR, Lin SX, Yu XM (2011) The NMDA receptor NR1 subunit is critically involved in the regulation of NMDA receptor activity by C-terminal Src kinase (Csk). Neurochem Res 36:319–326

    Article  PubMed  CAS  Google Scholar 

  18. Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42

    Article  PubMed  CAS  Google Scholar 

  19. Feng S, Wei J, Gao M, Tang X, Su J (2010) Inhibition on voltage-gated sodium channels in rat spiral ganglion neurons by salicylate. J Guangxi Med Univ 1:1–4

    CAS  Google Scholar 

  20. Fryatt AG, Vial C, Mulheran M, Gunthorpe MJ, Grubb BD (2009) Voltage-gated sodium channel expression in rat spiral ganglion neurons. Mol Cell Neurosci 42:399–407

    Article  PubMed  CAS  Google Scholar 

  21. Gamper N, Stockand JD, Shapiro MS (2003) Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase. J Neurosci 23:84–95

    PubMed  CAS  Google Scholar 

  22. Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu XM (2011) The regulation of NMDA receptors by Src kinase. FEBS J 279:20–28

    Google Scholar 

  23. Groveman BR, Xue S, Marin V, Xu J, Ali MK, Bienkiewicz EA, Yu XM (2011) Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions. FEBS J 278:643–653

    Article  PubMed  CAS  Google Scholar 

  24. Gu RM, Wei Y, Falck JR, Krishna UM, Wang WH (2001) Effects of protein tyrosine kinase and protein tyrosine phosphatase on apical K(+) channels in the TAL. Am J Physiol Cell Physiol 281:C1188–C1195

    PubMed  CAS  Google Scholar 

  25. Harris KC, Hu B, Hangauer D, Henderson D (2005) Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 208:14–25

    Article  PubMed  CAS  Google Scholar 

  26. Holmes TC, Fadool DA, Ren R, Levitan IB (1996) Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science 274:2089–2091

    Article  PubMed  CAS  Google Scholar 

  27. Jia Z, Jia Y, Liu B, Zhao Z, Jia Q, Liang H, Zhang H (2008) Genistein inhibits voltage-gated sodium currents in SCG neurons through protein tyrosine kinase-dependent and kinase-independent mechanisms. Pflugers Arch 456:857–866

    Article  PubMed  CAS  Google Scholar 

  28. Kalia LV, Gingrich JR, Salter MW (2004) Src in synaptic transmission and plasticity. Oncogene 23:8007–8016

    Article  PubMed  CAS  Google Scholar 

  29. Karni R, Mizrachi S, Reiss-Sklan E, Gazit A, Livnah O, Levitzki A (2003) The pp 60c-Src inhibitor PP1 is non-competitive against ATP. FEBS Lett 537:47–52

    Article  PubMed  CAS  Google Scholar 

  30. Kotecha SA, MacDonald JF (2003) Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. Int Rev Neurobiol 54:51–106

    Article  PubMed  CAS  Google Scholar 

  31. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  PubMed  CAS  Google Scholar 

  32. Lei G, Xue S, Chery N, Liu Q, Xu J, Kwan CL, Fu Y, Lu YM, Liu M, Harder KH, Yu XM (2002) Gain control of N-methyl-d-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha. EMBO J 21:2977–2989

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Langlais P, Gamper N, Liu F, Shapiro MS (2004) Dual phosphorylations underlie modulation of unitary KCNQ K(+) channels by Src tyrosine kinase. J Biol Chem 279:45399–45407

    Article  PubMed  CAS  Google Scholar 

  34. Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179

    Article  PubMed  CAS  Google Scholar 

  35. Lin X, Chen S, Tee D (1998) Effects of quinine on the excitability and voltage-dependent currents of isolated spiral ganglion neurons in culture. J Neurophysiol 79:2503–2512

    PubMed  CAS  Google Scholar 

  36. Ling S, Sheng JZ, Braun AP (2004) The calcium-dependent activity of large-conductance, calcium-activated K+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation. Am J Physiol Cell Physiol 287:C698–C706

    Article  PubMed  CAS  Google Scholar 

  37. Ling S, Woronuk G, Sy L, Lev S, Braun AP (2000) Enhanced activity of a large conductance, calcium-sensitive K+ channel in the presence of Src tyrosine kinase. J Biol Chem 275:30683–30689

    Article  PubMed  CAS  Google Scholar 

  38. Liu X, Brodeur SR, Gish G, Songyang Z, Cantley LC, Laudano AP, Pawson T (1993) Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8:1119–1126

    PubMed  CAS  Google Scholar 

  39. Liu XJ, Gingrich JR, Vargas-Caballero M, Dong YN, Sengar A, Beggs S, Wang SH, Ding HK, Frankland PW, Salter MW (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14:1325–1332

    Article  PubMed  CAS  Google Scholar 

  40. Marin V, Groveman BR, Qiao H, Xu J, Ali MK, Fang XQ, Lin SX, Rizkallah R, Hurt MH, Bienkiewicz EA, Yu XM (2010) Characterization of neuronal Src kinase purified from a bacterial expression system. Protein Expr Purif 74:289–297

    Article  PubMed  CAS  Google Scholar 

  41. Repp H, Birringer J, Koschinski A, Dreyer F (2001) Activation of a Ca2+-dependent K+ current in mouse fibroblasts by sphingosine-1-phosphate involves the protein tyrosine kinase c-Src. Naunyn Schmiedebergs Arch Pharmacol 363:295–301

    Article  PubMed  CAS  Google Scholar 

  42. Rusznak Z, Szucs G (2009) Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch 457:1303–1325

    Article  PubMed  CAS  Google Scholar 

  43. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328

    Article  PubMed  CAS  Google Scholar 

  44. Salter MW, Pitcher GM (2011) Dysregulated Src upregulation of NMDA receptor activity: a common link in chronic pain and schizophrenia. FEBS J 279:2–11

    Google Scholar 

  45. Santos-Sacchi J (1993) Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J Neurosci 13:3599–3611

    PubMed  CAS  Google Scholar 

  46. Sobko A, Peretz A, Attali B (1998) Constitutive activation of delayed-rectifier potassium channels by a Src family tyrosine kinase in Schwann cells. EMBO J 17:4723–4734

    Article  PubMed  CAS  Google Scholar 

  47. Spoendlin H (1988) Neural anatomy of the ear. In: Janh A, Santos-Sacchi J (eds) Physiology of the ear. Raven, New York, pp 201–219

    Google Scholar 

  48. Strauss O, Rosenthal R, Dey D, Beninde J, Wollmann G, Thieme H, Wiederholt M (2002) Effects of protein kinase C on delayed rectifier K+ channel regulation by tyrosine kinase in rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 43:1645–1654

    PubMed  Google Scholar 

  49. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469

    Article  PubMed  CAS  Google Scholar 

  50. Tang X, Gao M, Feng S, Su J (2010) Gamma-aminobutyric acid A receptor and N-methyl-d-aspartate receptor subunit expression in rat spiral ganglion neurons. Neural Regen Res 5:1–3

    Google Scholar 

  51. Tong Q, Stockand JD (2005) Receptor tyrosine kinases mediate epithelial Na(+) channel inhibition by epidermal growth factor. Am J Physiol Renal Physiol 288:F150–F161

    Article  PubMed  CAS  Google Scholar 

  52. Traxler P, Bold G, Frei J, Lang M, Lydon N, Mett H, Buchdunger E, Meyer T, Mueller M, Furet P (1997) Use of a pharmacophore model for the design of EGF-R tyrosine kinase inhibitors: 4-(phenylamino)pyrazolo[3,4-d]pyrimidines. J Med Chem 40:3601–3616

    Article  PubMed  CAS  Google Scholar 

  53. Trepanier CH, Jackson MF, MacDonald JF (2011) Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 279:12–19

    Google Scholar 

  54. Xu J, Weerapura M, Ali MK, Jackson MF, Li H, Lei G, Xue S, Kwan CL, Manolson MF, Yang K, MacDonald JF, Yu XM (2008) Control of excitatory synaptic transmission by C-terminal Src kinase. J Biol Chem 283:17503–17514

    Article  PubMed  CAS  Google Scholar 

  55. Yu XM, Askalan R, Keil GJI, Salter MW (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:674–678

    Article  PubMed  CAS  Google Scholar 

  56. Yu XM, Groveman BR (2011) Src family kinases in the nervous system. FEBS J 279:1–1

    Google Scholar 

Download references

Acknowledgements

SF is supported by the State Scholarship Fund of China (2009845013). This work was supported by a grant from NIH (5R01 NS053567-04) to XMY. We would like to thank Dr. M. W. Salter for kindly supplying us Src inhibitory peptide (Src40–58), SFK activator peptide (EPQ(pY)EEIPIA), and control peptide (EPQYEEIPIA). We would also like to thank Drs. M. W. Salter, M. Hildebrand, and G. Pitcher for the very constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiping Su or Xian-Min Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM doc

(DOC 27.0 KB)

Supplementary Fig. 1

Expression of SFKs in SGNs. N-200: an antibody staining for neurofilament 200; SFKs: an antibody staining for SFKs. Merge: merged image showing co-labeling of neurofilament 200 and SFKs (TIFF 716 KB)

Supplementary Fig. 2

Effects of intracellular application of the SFK activator peptide EPQ(pY)EEIPIA (1 mM) on TTX-resistant inward current. A: example of current traces recorded immediately (0’) and 5 min after breakthrough with electrodes filled with intracellular solution containing the SFK activator peptide, EPQ(pY)EEIPIA (1 mM) from a SGN bathed with extracellular solution containing TTX (1 μM). B: Summary data showing relative changes in TTX-resistant currents recorded from SGNs applied intracellularly with the SFK activator peptide. Values in brackets indicate number of SGNs tested (TIFF 9.10 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Pflueger, M., Lin, SX. et al. Regulation of voltage-gated sodium current by endogenous Src family kinases in cochlear spiral ganglion neurons in culture. Pflugers Arch - Eur J Physiol 463, 571–584 (2012). https://doi.org/10.1007/s00424-012-1072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1072-4

Keywords

Navigation